Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Microencapsul ; : 1-23, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990129

RESUMO

AIMS: There are around 24 distinct lipid vesicles described in the literature that are similar to vesicular systems such as liposomes. Liposome-like structures are formed by combining certain amphiphilic lipids with a suitable stabiliser. Since their discovery and classification, self-assembled liposome-like structures as active drug delivery vehicles captured researchers' curiosity. METHODOLOGY: This comprehensive study included an in-depth literature search using electronic databases such as PubMed, ScienceDirect and Google Scholar, focusing on studies on liposome and liposomes like structure, discussed in literature till 2024, their sizes, benefits, drawback, method of preparation, characterisation and pharmaceutical applications. RESULTS: Pharmacosomes, cubosomes, ethosomes, transethosomes, and genosomes, all liposome-like structures, have the most potential due to their smaller size with high loading capacity, ease of absorption, and ability to treat inflammatory illnesses. Genosomes are futuristic because of its affinity for DNA/gene transport, which is an area of focus in today's treatments. CONCLUSION: This review will critically analyse the composition, preparation procedures, drug encapsulating technologies, drug loading, release mechanism, and related applications of all liposome-like structures, highlighting their potential benefits with enhanced efficacy over each other and over traditional carriers by paving the way for exploring novel drug delivery systems in the Pharma industry.

2.
AAPS PharmSciTech ; 25(4): 64, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514495

RESUMO

As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Engenharia Tecidual/métodos , Sistemas de Liberação de Medicamentos , Polímeros
3.
Small ; 19(19): e2207057, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775954

RESUMO

Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.


Assuntos
Antibacterianos , Antioxidantes , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Cicatrização , Estresse Oxidativo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
4.
Exp Dermatol ; 32(9): 1459-1467, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37283479

RESUMO

Opioid and local anaesthetic receptors are abundantly concentrated in different layers of the skin. Therefore, simultaneous targeting of these receptors can produce more potent dermal anaesthesia. Herein, we developed lipid-based nanovesicles for the co-delivery of buprenorphine and bupivacaine to efficiently target skin-concentrated pain receptors. Invasomes incorporating two drugs were prepared by ethanol injection method. Subsequently, the size, zeta potential, encapsulation efficiency, morphology, and in-vitro drug release of vesicles were characterized. Ex-vivo penetration features of vesicles were then investigated by the franz diffusion cell on the full-thickness human skin. Wherein, it was demonstrated that invasomes penetrated the skin deeper and delivered bupivacaine more effectively than buprenorphine to the target site. The superiority of invasome penetration was further evidenced by the results of ex-vivo fluorescent dye tracking. Estimation of in-vivo pain responses by the tail-flick test revealed that compared with the liposomal group, the group receiving invasomal formulation and drug-free invasomal formulation (only containing menthol) displayed increased analgesia in the initial times of 5 and 10 min. Also, no signs of oedema or erythema were observed in the Daze test in any of the rats receiving the invasome formulation. Finally, ex-vivo and in-vivo assays demonstrated efficiency in delivering both drugs into deeper layers of skin and exposing them to the located pain receptors, which improves the time of onset and the analgesic effects. Hence, this formulation appears to be a promising candidate for tremendous development in the clinical setting.


Assuntos
Analgesia , Buprenorfina , Humanos , Ratos , Animais , Bupivacaína/farmacologia , Buprenorfina/farmacologia , Pele , Lipossomos/farmacologia , Dor
5.
Mol Pharm ; 20(8): 3804-3828, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478169

RESUMO

Rosacea is a multifactorial chronic inflammatory dermatosis characterized by flushing, nontransient erythema, papules and pustules, telangiectasia, and phymatous alterations accompanied by itching, burning, or stinging, the pathophysiology of which is not yet fully understood. Conventional topical treatments usually show limited efficacy due to the physical barrier property of the skin that hinders skin penetration of the active ingredients, thereby hampering proper drug skin delivery and the respective therapeutic or cosmetic effects. New advances regarding the physiopathological understanding of the disease and the underlying mechanisms suggest the potential of new active ingredients as promising therapeutic and cosmetic approaches to this dermatosis. Additionally, the development of new drug delivery systems for skin delivery, particularly the potential of nanoparticles for the topical treatment and care of rosacea, has been described. Emphasis has been placed on their reduced nanometric size, which contributes to a significant improvement in the attainment of targeted skin drug delivery. In addition to the exposition of the known pathophysiology, epidemiology, diagnosis, and preventive measures, this Review covers the topical approaches used in the control of rosacea, including skin care, cosmetics, and topical therapies, as well as the future perspectives on these strategies.


Assuntos
Fármacos Dermatológicos , Rosácea , Humanos , Rosácea/tratamento farmacológico , Rosácea/diagnóstico , Rosácea/patologia , Administração Tópica , Doença Crônica , Fármacos Dermatológicos/uso terapêutico
6.
Transpl Infect Dis ; 25(4): e14098, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37428874

RESUMO

INTRODUCTION: Measles, mumps, rubella, and even poliomyelitis outbreaks have recently perplexed infectious disease clinicians and epidemiologists globally due to the decline in vaccination coverage rates in children and adults. Measles and yellow fever (YF) have represented an increasing burden on the Brazilian public health system in recent decades. Both diseases are preventable by live-attenuated viral vaccines (LAVV), which have restricted use in hematopoietic cell transplant (HCT) recipients. METHODS: Autologous and allogeneic HCT recipients returning for regular appointments at the outpatient clinic were invited to participate in the study. Patients transplanted for at least 2 years and with a printed copy of the vaccination record were included. RESULTS: We assessed the vaccination records of 273 HCT recipients after the second year of HCT (193 allogeneic and 80 autologous) and observed lower compliance with the YF vaccine (58 patients, 21.2%) than with the measles vaccine (138 patients, 50.5%, p ≤ .0001). This is the largest published series of YF vaccination in HCT recipients so far. No severe adverse events occurred. Although expected, chronic graft-versus-host disease (GVHD) did not affect the compliance with measles (p = .08) or YF vaccination (p = .7). Indeed, more allogeneic recipients received measles vaccine in comparison with autologous patients (p < .0001), suggesting that chronic GVHD was not the main reason for not being vaccinated. Children and allogeneic HCT were more likely to receive measles vaccine. Time elapsed from HCT >5 years favored both measles and YF vaccination. CONCLUSION: A better understanding of the reasons for low compliance with LAVV is necessary to overcome this problem.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Sarampo , Vacina contra Febre Amarela , Febre Amarela , Adulto , Criança , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunização Secundária , Sarampo/prevenção & controle , Vacina contra Sarampo/administração & dosagem , Vacinação , Vacinas Virais , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/administração & dosagem
7.
Environ Res ; 235: 116700, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479214

RESUMO

A novel biodegradable dextrin-based nanocomposite, involving polypyrrole (PPy) and hydrophilic dextrin (Dex) (PPy@Dex) was prepared using in-situ radical chemical polymerization technique. The obtained PPy@Dex bionanocomposite was fully characterized by FT-IR, XRD, FESEM, and DSC methods. The exceptional properties such as biocompatibility, high surface area, the proper functional group on the surface, and outstanding electrical conductivity of synthesized bionanocomposite made it a superior candidate over biomolecules immobilization. Electrochemical observations revealed that the PPy@Dex-coated glassy carbon electrode (GCE) demonstrated improved performance, making it a suitable substrate for immobilizing hemoglobin (Hb) and constructing an efficient biosensor. The resulting biosensor, named Hb-PPy@Dex/GCE, exhibited high activity in the reduction of hydrogen peroxide (H2O2). Amperometric examinations demonstrated an extensive linear range from 2 to 350 µM for Hb-PPy@Dex/GCE. The detection limit of the proposed approach was calculated to be 0.54 µM, following the S/N = 3 protocol.


Assuntos
Peróxido de Hidrogênio , Polímeros , Polímeros/química , Peróxido de Hidrogênio/química , Dextrinas , Espectroscopia de Infravermelho com Transformada de Fourier , Pirróis/química , Hemoglobinas , Carbono/química
8.
J Nanobiotechnology ; 21(1): 199, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344894

RESUMO

Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Nanoestruturas , Pneumonia , Viroses , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/prevenção & controle , Nanoestruturas/uso terapêutico , Teste para COVID-19
9.
Mar Drugs ; 21(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103352

RESUMO

Chitin is the second most abundant biopolymer consisting of N-acetylglucosamine units and is primarily derived from the shells of marine crustaceans and the cell walls of organisms (such as bacteria, fungi, and algae). Being a biopolymer, its materialistic properties, such as biodegradability, and biocompatibility, make it a suitable choice for biomedical applications. Similarly, its deacetylated derivative, chitosan, exhibits similar biocompatibility and biodegradability properties, making it a suitable support material for biomedical applications. Furthermore, it has intrinsic material properties such as antioxidant, antibacterial, and antitumor. Population studies have projected nearly 12 million cancer patients across the globe, where most will be suffering from solid tumors. One of the shortcomings of potent anticancer drugs is finding a suitable cellular delivery material or system. Therefore, identifying new drug carriers to achieve effective anticancer therapy is becoming essential. This paper focuses on the strategies implemented using chitin and chitosan biopolymers in drug delivery for cancer treatment.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas , Neoplasias , Humanos , Quitosana/uso terapêutico , Quitina , Sistemas de Liberação de Medicamentos , Biopolímeros , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
10.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298889

RESUMO

The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.


Assuntos
Inflamação , Neoplasias , Humanos , Inflamação/tratamento farmacológico , Neoplasias/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Quimiocinas , Microambiente Tumoral
11.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838849

RESUMO

Many plants are used by the population through popular knowledge passed from generation to generation for the treatment of various diseases. However, there is not always any scientific content supporting these uses, which is very important for safety. One of these plants is the fruit of the Spondias genus, which during its processing generates various residues that are discarded, but which also have pharmacological properties. The focus of this review is to survey the pharmacological activities that Spondias genus shows, as well as which part of the plant is used, since there is a lot of richness in its by-products, such as leaf, bark, resin, seed, and peel, which are discarded and could be reused. The main activities of this genus are antioxidant, anti-inflammatory, antidiabetic, antifungal, and antiviral, among others. These properties indicate that this genus could be used in the treatment of several diseases, but there are still not many products available on the market that use this genus as an active ingredient.


Assuntos
Anacardiaceae , Extratos Vegetais , Etnofarmacologia , Extratos Vegetais/química , Fitoterapia , Medicina Tradicional , Compostos Fitoquímicos
12.
J Nanobiotechnology ; 20(1): 522, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496422

RESUMO

Critical-sized bone defects are always difficult to treat, and they are associated with a significant burden of disease in clinical practice. In recent decades, due to the fast development of biomaterials and tissue engineering, many bioinspired materials have been developed to treat large bone defects. Due to the excellent osteoblastic ability of black phosphorous (BP), many BP-based biomaterials have been developed to treat bone defects. Therefore, there are abundant studies as well as a tremendous amount of research data. It is urgent to conduct evidence-based research to translate these research data and results into validated scientific evidence. Therefore, in our present study, a qualitative systematic review and a quantitative meta-analysis were performed. Eighteen studies were included in a systematic review, while twelve studies were included in the meta-analysis. Our results showed that the overall quality of experimental methods and reports of biomaterials studies was still low, which needs to be improved in future studies. Besides, we also proved the excellent osteoblastic ability of BP-based biomaterials. But we did not find a significant effect of near-infrared (NIR) laser in BP-based biomaterials for treating bone defects. However, the quality of the evidence presented by included studies was very low. Therefore, to accelerate the clinical translation of BP-based biomaterials, it is urgent to improve the quality of the study method and reporting in future animal studies. More evidence-based studies should be conducted to enhance the quality and clinical translation of BP-based biomaterials.


Assuntos
Materiais Biocompatíveis , Fósforo , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Fósforo/farmacologia , Regeneração Óssea , Engenharia Tecidual/métodos
13.
Pharm Res ; 38(6): 947-970, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036520

RESUMO

The use of nanotechnology has been extensively explored for developing efficient drug delivery systems towards topical and transdermal applications. Ethosomes constitute a vesicular nanocarrier containing a relatively high concentration of ethanol (20-45%). Ethanol is a well-known permeation enhancer, which confers ethosomes unique features, including high elasticity and deformability, allowing them to penetrate deeply across the skin and enhance drug permeation and deposition. The improved composition of ethosomes offer, thereby, significant advantages in the delivery of therapeutic agents over particularly the conventional liposomes regarding different pathologies, including acne, psoriasis, alopecia, skin infections, hormonal deficiencies, among others. This review provides a comprehensive overview of the ethosomal system and an assessment of its potential as an efficient nanocarrier towards the skin delivery of active ingredients. Special attention is given to the composition of ethosomes and the mechanism of skin permeation, as well as their potential applications in different pathologies, particularly skin pathologies (acne, psoriasis, atopic dermatitis, skin cancer and skin infections). Some examples of ethosome-based formulations for the management of skin disorders are also highlighted. Besides the need for further studies, particularly in humans, ethosomal-based formulations hold great promise in the skin delivery of active ingredients, which increasingly asserts oneself as a viable alternative to the oral route.


Assuntos
Portadores de Fármacos/metabolismo , Composição de Medicamentos/métodos , Etanol/metabolismo , Nanopartículas/metabolismo , Fosfolipídeos/metabolismo , Absorção Cutânea/fisiologia , Administração Cutânea , Animais , Portadores de Fármacos/administração & dosagem , Etanol/administração & dosagem , Humanos , Lipossomos/administração & dosagem , Lipossomos/metabolismo , Nanopartículas/administração & dosagem , Fosfolipídeos/administração & dosagem , Pele/efeitos dos fármacos , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
14.
J Nanobiotechnology ; 19(1): 84, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766058

RESUMO

BACKGROUND: The development of nano delivery systems is rapidly emerging area of nanotechnology applications where nanomaterials (NMs) are employed to deliver therapeutic agents to specific site in a controlled manner. To accomplish this, green synthesis of NMs is widely explored as an eco-friendly method for the development of smart drug delivery system. In the recent times, use of green synthesized NMs, especially metallic NMs have fascinated the scientific community as they are excellent carriers for drugs. This work demonstrates optimized green, biogenic synthesis of gold nanoparticles (AuNPs) for functionalization with quercetin (QT) and camptothecin (CPT) to enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities of these drugs. RESULTS: Gold nanoparticles were optimally synthesized in 8 min of reaction at 90 °C, pH 6, using 4 mM of HAuCl4 and 4:1 ratio of extract: HAuCl4. Among different capping agents tested, capping of AuNPs with polyethylene glycol 9000 (PG9) was found best suited prior to functionalization. PG9 capped AuNPs were optimally functionalized with QT in 1 h reaction at 70 °C, pH 7, using 1200 ppm of QT and 1:4 ratio of AuNPs-PG9:QT whereas, CPT was best functionalized at RT in 1 h, pH 12, AuNPs-PG9:CPT ratio of 1:1, and 0.5 mM of CPT. QT functionalized AuNPs showed good anti-cancer activity (IC50 687.44 µg/mL) against MCF-7 cell line whereas test of anti-inflammatory activity also showed excellent activity (IC50 287.177 mg/L). The CAM based assessment of anti-angiogenic activity of CPT functionalized AuNPs demonstrated the inhibition of blood vessel branching confirming the anti-angiogenic effect. CONCLUSIONS: Thus, present study demonstrates that optimally synthesized biogenic AuNPs are best suited for the functionalization with drugs such as QT and CPT. The functionalization of these drugs with biogenic AuNPs enhances the potential anti-inflammatory, anti-cancer and anti-angiogenic activities of these drugs, therefore can be used in biomedical application.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Camptotecina/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Quercetina/química , Ouro/química , Química Verde/métodos , Humanos , Células MCF-7 , Nanotecnologia , Extratos Vegetais
15.
Transpl Infect Dis ; 22(3): e13258, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32034983

RESUMO

BACKGROUND: Hepatitis A virus (HAV) infection is highly prevalent in developing countries. In countries experiencing a shift from intermediate/high endemicity to low endemicity, the World Health Organization recommends the incorporation of HAV vaccine into the national vaccination calendar for children aged ≥1 year. Since HAV antibodies wane over time, most HSCT revaccination guidelines advise vaccination as optional, following the country recommendation. However, no study has evaluated the serological response to HAV vaccine in allogeneic HSCT recipients. METHODS: We conducted a prospective study in 46 HSCT recipients who received two doses of inactivated HAV vaccine. Blood samples were taken before vaccination to determine HAV prevalence rates, and before and 4-6 weeks after the second dose. Specific anti-HAV antibodies were detected by a competitive commercial enzyme immune assay. RESULTS: Patients received the first dose of vaccine at a median of 332.5 (120-4134) days after HSCT. Median absolute lymphocyte count at vaccination was 1947 (696-12 500)/mm3 . The seroprevalence rate was 93.5% at inclusion. Although safe and well tolerated, the serological response to HAV vaccine in susceptible patients was poor (33%), and no boost effect was observed in seropositive patients. CONCLUSIONS: In areas with intermediate/high seroprevalence of HAV, serology should be recommended prior to referral to vaccination. The mechanisms of antibody interference and how to overcome T-cell function deficiency need to be better understood in transplant populations receiving HAV vaccine. Alternative schedules of HAV vaccination should be evaluated in prospective trials.


Assuntos
Anticorpos Antivirais/sangue , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Vacinas contra Hepatite A/imunologia , Hepatite A/prevenção & controle , Imunogenicidade da Vacina , Adolescente , Adulto , Idoso , Países em Desenvolvimento , Feminino , Vacinas contra Hepatite A/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Soroepidemiológicos , Vacinação , Adulto Jovem
16.
Mar Drugs ; 18(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952203

RESUMO

Polyelectrolyte nanocomposites rarely reach a stable state and aggregation often occurs. Here, we report the synthesis of nanocomposites for the oral delivery of insulin composed of alginate, dextran sulfate, poly-(ethylene glycol) 4000, poloxamer 188, chitosan, and bovine serum albumin. The nanocomposites were obtained by Ca2+-induced gelation of alginate followed by an electrostatic-interaction process among the polyelectrolytes. Chitosan seemed to be essential for the final size of the nanocomposites and there was an optimal content that led to the synthesis of nanocomposites of 400-600 nm hydrodynamic size. The enhanced stability of the synthesized nanocomposites was assessed with LUMiSizer after synthesis. Nanocomposite stability over time and under variations of ionic strength and pH were assessed with dynamic light scattering. The rounded shapes of nanocomposites were confirmed by scanning electron microscopy. After loading with insulin, analysis by HPLC revealed complete drug release under physiologically simulated conditions.


Assuntos
Insulina/administração & dosagem , Insulina/química , Nanocompostos/química , Polissacarídeos/química , Administração Oral , Alginatos/química , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Géis/química , Polietilenoglicóis/química , Soroalbumina Bovina/química , Eletricidade Estática
17.
Analyst ; 144(6): 2062-2079, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30724915

RESUMO

trans-Resveratrol (RSV) is a plant-derived polyphenol endowed with a broad spectrum of promising therapeutic activities. The applicability of RSV in vivo has, however, had limited success so far, largely due to its inefficient systemic delivery resulting from its low water solubility. Layer-by-Layer (LbL) nanotechnology constitutes an innovative formulation strategy to address this concern, and is based on the design of tunable onion-like multilayered nanoarchitectures on the surface of low solubility drug nanocores, such as RSV. The purpose of this study was the investigation of the bioavailability of an LbL nanoformulation composed of 5.5 bilayers of polyallylamine hydrochloride (PAH) and dextran sulfate (DS) (LbL NPs) by pharmacokinetic studies following oral dosing to Wistar rats (20 mg kg-1). The systemic exposure of LbL NPs was compared to the respective nanoformulation without LbL coatings (RSV nanocores) and the free RSV suspension. The results demonstrated that both LbL NPs and RSV nanocores significantly enhanced, respectively, 1.76-fold and 2.74-fold the systemic exposure of RSV compared to the free RSV suspension, emphasizing their biopharmaceutical advantage. Surprisingly, besides the modified drug release potential of the LbL NPs, these exhibited a slightly lower systemic exposure (0.36-fold) in comparison with non-LbL modified RSV nanocores. These results were justified only by the electrostatic interactions composition of the LbL shell composition, requiring further research towards the application of stronger interactions. For this study, due to the key role of the bioanalytical method in the in vivo data acquisition, a rapid, selective, and sensitive HPLC-DAD method has been successfully optimized and fully validated to confidently quantify RSV levels in the rat plasma matrix, together with the optimization of the sample preparation procedure. Moreover, the chemical stability of RSV was evaluated for 24 h in simulated gastric and intestinal fluids with enzymes. Overall, our findings suggest that LbL NPs should be given great attention, representing a potential drug delivery system for RSV in view of the application of RSV not solely as a supplement but also as a therapeutic drug.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Nanopartículas/química , Resveratrol/administração & dosagem , Resveratrol/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
18.
J Arthroplasty ; 31(1): 234-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26362785

RESUMO

To study the prevalence of Staphylococcus aureus carriage and the impact of preoperatively treating carriers in prosthetic joint infection (PJI), a prospective randomized trial was organized. From January 2010 to December 2012, 1028 of 1305 total joint arthroplasties performed were screened, and selected carriers underwent preoperative decolonization. We observed a 22.2% (228/1028) S aureus colonization rate and only 0.8% methicillin-resistant S aureus. Prosthetic joint infection rate was higher, albeit not significantly, in S aureus carriers than among noncarriers-3.9% (9/228) vs 2.0% (16/800). Treated and untreated carriers showed no significant differences-3.4% (3/89) vs 4.3% (6/139). Most of the 14 S aureus PJI occurred in noncarriers suggesting a lack of causal relation between nasal and PJI S aureus. No clear benefit in screening/decolonizing carriers before total joint arthroplasty could be demonstrated.


Assuntos
Artroplastia de Quadril/métodos , Artroplastia do Joelho/métodos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus , Infecção da Ferida Cirúrgica/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia/efeitos adversos , Feminino , Humanos , Masculino , Resistência a Meticilina , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
19.
Hum Cell ; 37(1): 121-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37878214

RESUMO

Almost all cell types, either in vivo or in vitro, create extracellular vesicles (EVs). Among them are exosomes (EXOs), i.e., tiny nanovesicles containing a lipid bilayer, proteins, and RNAs that are actively involved in cellular communication, indicating that they may be exploited as both diagnostics and therapeutics for conditions like cancer. These nanoparticles can also be used as nanocarriers in many types of research to carry agents such as drugs. Plant-derived exosome-like nanoparticles (PENs) are currently under investigation as a substitute for EXOs formed from mammalian cells, allowing researchers to get beyond the technical constraints of mammalian vesicles. Because of their physiological, chemical, and biological properties, PENs have a lot of promise for use as nanocarriers in drug delivery systems that can deliver various dosages, especially when it comes to large-scale repeatability. The present study has looked at the origins and isolation techniques of PENs, their anticancer properties, their usage as nanocarriers in the treatment of different illnesses, and their antioxidant properties. These nanoparticles can aid in the achievement of therapeutic objectives, as they have benign, non-immunogenic side effects and can pass biological barriers. Time-consuming and perhaps damaging PEN separation techniques is used. For the current PEN separation techniques to be used in commercial and therapeutic settings, they must be altered. In this regard, the concurrent application of biological sciences can be beneficial for improving PEN separation techniques. PENs' innate metabolic properties provide them a great deal of promise for application in drug delivery systems. However, there could be a risk to both the loaded medications and the intrinsic bioactive components if these particles are heavily armed with drugs. Therefore, to prevent these side effects, more studies are needed to devise sophisticated drug-loading procedures and to learn more about the physiology of PENs.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Animais , Exossomos/metabolismo , Engenharia Tecidual , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mamíferos
20.
Gels ; 10(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38247768

RESUMO

Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA