Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Nature ; 580(7805): 597-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161364

RESUMO

Ultrahot giant exoplanets receive thousands of times Earth's insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3-5. Daysides are predicted to be cloud-free, dominated by atomic species6 and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10-14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night ('evening') and night-to-day ('morning') terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.

2.
Nature ; 583(7814): 39-42, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612222

RESUMO

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune 'desert'1,2 (a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b3, which is thought to have an unusually massive core, and recent discoveries such as LTT9779b4 and NGTS-4b5, on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune's but an anomalously large mass of [Formula: see text] Earth masses and a density of [Formula: see text] grams per cubic centimetre, similar to Earth's. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than [Formula: see text] per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation6. Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.

3.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34528688

RESUMO

In atherosclerotic lesions, vascular smooth muscle cells (VSMCs) represent half of the foam cell population, which is characterized by an aberrant accumulation of undigested lipids within lysosomes. Loss of lysosome function impacts VSMC homeostasis and disease progression. Understanding the molecular mechanisms underlying lysosome dysfunction in these cells is, therefore, crucial. We identify cholesteryl hemiazelate (ChA), a stable oxidation end-product of cholesteryl-polyunsaturated fatty acid esters, as an inducer of lysosome malfunction in VSMCs. ChA-treated VSMCs acquire a foam-cell-like phenotype, characterized by enlarged lysosomes full of ChA and neutral lipids. The lysosomes are perinuclear and exhibit degradative capacity and cargo exit defects. Lysosome luminal pH is also altered. Even though the transcriptional response machinery and autophagy are not activated by ChA, the addition of recombinant lysosomal acid lipase (LAL) is able to rescue lysosome dysfunction. ChA significantly affects VSMC proliferation and migration, impacting atherosclerosis. In summary, this work shows that ChA is sufficient to induce lysosomal dysfunction in VSMCs, that, in ChA-treated VSMCs, neither lysosome biogenesis nor autophagy are triggered, and, finally, that recombinant LAL can be a therapeutic approach for lysosomal dysfunction.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Proliferação de Células , Células Cultivadas , Células Espumosas , Homeostase , Lisossomos
4.
Small ; : e2309140, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342712

RESUMO

The successful translation of therapeutic nucleic acids (NAs) for the treatment of neurological disorders depends on their safe and efficient delivery to neural cells, in particular neurons. DNA nanostructures can be a promising NAs delivery vehicle. Nonetheless, the potential of DNA nanostructures for neuronal cell delivery of therapeutic NAs is unexplored. Here, tetrahedral DNA nanostructures (TDN) as siRNA delivery scaffolds to neuronal cells, exploring the influence of functionalization with two different reported neuronal targeting ligands: C4-3 RNA aptamer and Tet1 peptide are investigated. Nanostructures are characterized in vitro, as well as in silico using molecular dynamic simulations to better understand the overall TDN structural stability. Enhancement of neuronal cell uptake of TDN functionalized with the C4-3 Aptamer (TDN-Apt), not only in neuronal cell lines but also in primary neuronal cell cultures is demonstrated. Additionally, TDN and TDN-Apt nanostructures carrying siRNA are shown to promote silencing in a process aided by chloroquine-induced endosomal disruption. This work presents a thorough workflow for the structural and functional characterization of the proposed TDN as a nano-scaffold for neuronal delivery of therapeutic NAs and for targeting ligands evaluation, contributing to the future development of new neuronal drug delivery systems based on DNA nanostructures.

5.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203790

RESUMO

This Special Issue presents five contributions covering various topics, as it would be expected for an area as comprehensive and multidisciplinary as Macromolecules [...].


Assuntos
Estudos Interdisciplinares , Portugal , Substâncias Macromoleculares
6.
Nature ; 544(7650): 333-336, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28426003

RESUMO

M dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future.


Assuntos
Meio Ambiente Extraterreno/química , Planetas , Astros Celestes , Temperatura , Exobiologia , Água/análise , Água/química
7.
Food Microbiol ; 113: 104251, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098418

RESUMO

The viability of SARS-CoV-2 on food surfaces and its propagation through the food chain has been discussed by several stakeholders, as it may represent a serious public health problem, bringing new challenges to the food system. This work shows for the first time that edible films can be used against SARS-CoV-2. Sodium alginate-based films containing gallic acid, geraniol, and green tea extract were evaluated in terms of their antiviral activity against SARS-CoV-2. The results showed that all these films have strong in vitro antiviral activity against this virus. However, a higher concentration of the active compound (1.25%) is needed for the film containing gallic acid to achieve similar results to those obtained for lower concentrations of geraniol and green tea extract (0.313%). Furthermore, critical concentrations of the active compounds in the films were used to evaluate their stability during storage. Results showed that gallic acid-loaded films lose their activity from the second week of storage, while films with geraniol and green tea extract only show a drop in activity after four weeks. These results highlight the possibility of using edible films and coatings as antiviral materials on food surfaces or food contact materials, which may help to reduce the spreading of viruses through the food chain.


Assuntos
COVID-19 , Filmes Comestíveis , Humanos , Alginatos , Embalagem de Alimentos/métodos , SARS-CoV-2 , Antioxidantes , Extratos Vegetais/farmacologia , Chá , Antivirais/farmacologia , Ácido Gálico/farmacologia
8.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108363

RESUMO

The interaction between peptides and biological membranes is of fundamental importance in the mechanism of numerous membrane-mediated cellular processes, including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier, and viral fusion processes [...].


Assuntos
Bicamadas Lipídicas , Peptídeos , Membranas , Membrana Celular
9.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674863

RESUMO

Malaria remains a major world public health problem, contributing to poverty and inequality. It is urgent to find new efficacious tools with few adverse effects. Malaria has selected red blood cell (RBC) alterations linked to resistance against infection, and understanding the protective mechanisms involved may be useful for developing host-directed tools to control Plasmodium infection. Pyruvate kinase deficiency has been associated with resistance to malaria. Pyruvate kinase-deficient RBCs display an increased concentration of 2,3-diphosphoglycerate (2,3-DPG). We recently showed that 2,3-DPG impacts in vitro intraerythrocytic parasite growth, induces a shift of the metabolic profile of infected cells (iRBCs), making it closer to that of noninfected ones (niRBCs), and decreases the number of parasite progenies that invade new RBCs. As an increase of 2,3-DPG content may also have an adverse effect on RBC membrane and, consequently, on the parasite invasion, in this study, we explored modifications of the RBC morphology, biomechanical properties, and RBC membrane on Plasmodium falciparum in vitro cultures treated with 2,3-DPG, using atomic force microscopy (AFM)-based force spectroscopy and other experimental approaches. The presence of infection by P. falciparum significantly increased the rigidity of parasitized cells and influenced the morphology of RBCs, as parasitized cells showed a decrease of the area-to-volume ratio. The extracellular addition of 2,3-DPG also slightly affected the stiffness of niRBCs, making it more similar to that of infected cells. It also changed the niRBC height, making the cells appear more elongated. Moreover, 2,3-DPG treatment influenced the cell surface charge, becoming more negative in treated RBCs than in untreated ones. The results indicate that treatment with 2,3-DPG has only a mild effect on RBCs in comparison with the effect of the presence of the parasite on the host cell. 2,3-DPG is an endogenous host metabolite, which may, in the future, originate a new antimalarial tool with few adverse effects on noninfected cells.


Assuntos
Malária Falciparum , Malária , Humanos , 2,3-Difosfoglicerato/metabolismo , Piruvato Quinase/metabolismo , Eritrócitos/metabolismo , Malária/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum , Ácidos Difosfoglicéricos/metabolismo
10.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175867

RESUMO

Dengue virus (DENV) is a single-stranded (+)-sense RNA virus that infects humans and mosquitoes, posing a significant health risk in tropical and subtropical regions. Mature virions are composed of an icosahedral shell of envelope (E) and membrane (M) proteins circumscribing a lipid bilayer, which in turn contains a complex of the approximately 11 kb genomic RNA with capsid (C) proteins. Whereas the structure of the envelope is clearly defined, the structure of the packaged genome in complex with C proteins remains elusive. Here, we investigated the interactions of C proteins with viral RNA, in solution and inside mature virions, via footprinting and cross-linking experiments. We demonstrated that C protein interaction with DENV genomes saturates at an RNA:C protein ratio below 1:250. Moreover, we also showed that the length of the RNA genome interaction sites varies, in a multimodal distribution, consistent with the C protein binding to each RNA site mostly in singlets or pairs (and, in some instances, higher numbers). We showed that interaction sites are preferentially sites with low base pairing, as previously measured by 2'-acetylation analyzed by primer extension (SHAPE) reactivity indicating structuredness. We found a clear association pattern emerged: RNA-C protein binding sites are strongly associated with long-range RNA-RNA interaction sites, particularly inside virions. This, in turn, explains the need for C protein in viral genome packaging: the protein has a chief role in coordinating these key interactions, promoting proper packaging of viral RNA. Such sites are, thus, highly consequential for viral assembly, and, as such, may be targeted in future drug development strategies against these and related viruses.


Assuntos
Proteínas do Capsídeo , Vírus da Dengue , Animais , Humanos , Proteínas do Capsídeo/química , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Genoma Viral , Capsídeo/química , RNA Viral/metabolismo
11.
World J Microbiol Biotechnol ; 38(1): 18, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34977979

RESUMO

Lantibiotics are a promising class of natural antimicrobial peptides. Lichenicidin is a two-peptide lantibiotic in which two mature peptides act synergistically to exhibit full bioactivity. Considering the two-peptide lantibiotics described so far, only cytolysin has been deeply characterized in terms of toxicity towards eukaryotic cells and it was found to be hemolytic and cytotoxic. This work aimed to improve the production of lichenicidin in vivo and characterize its antibacterial activity and toxicity against human cells. Peptides were purified and minimal inhibitory concentration (MIC) was determined against several strains; a time-kill assay was performed with Staphylococcus aureus. The hemolytic effect of lichenicidin was evaluated on blood samples from healthy donors and its toxicity towards human fibroblasts. The quantity of purified peptides was 1 mg/l Bliα and 0.4 mg/l Bliß. MIC for methicillin-sensitive and resistant S. aureus (MSSA and MRSA) strains were 16-32 µg/ml and 64-128 µg/ml, respectively. At the MIC, lichenicidin took less than 3 h to eliminate MSSA, indicating a strong bactericidal effect. It induces cell lysis at the highest concentration, an effect that might be potentiated by Bliß. Lichenicidin was not cytotoxic to human erythrocytes and fibroblasts. In this work, we evaluated the therapeutic potential of lichenicidin as a possible antimicrobial alternative.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Bacteriocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Peptídeos Antimicrobianos/isolamento & purificação , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Linhagem Celular , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Hemólise , Humanos , Testes de Sensibilidade Microbiana
12.
J Antimicrob Chemother ; 76(5): 1174-1186, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33501992

RESUMO

OBJECTIVES: The number of bacterial pathogens resistant to the currently available antibiotics has dramatically increased, with antimicrobial peptides (AMPs) being among the most promising potential new drugs. In this study, the applicability and mechanisms of action of Pa-MAP 2 and Pa-MAP 1.9, two AMPs synthetically designed based on a natural AMP template, were evaluated. METHODS: Pa-MAP 2 and Pa-MAP 1.9 were tested against a clinically isolated multidrug-resistant (MDR) Escherichia coli strain. Biophysical approaches were used to evaluate the preference of both peptides for specific lipid membranes, and bacterial surface changes imaged by atomic force microscopy (AFM). The efficacy of both peptides was assessed both in vitro and in vivo. RESULTS: Experimental results showed that both peptides have antimicrobial activity against the E. coli MDR strain. Zeta potential and surface plasmon resonance assays showed that they interact extensively with negatively charged membranes, changing from a random coil structure, when free in solution, to an α-helical structure after membrane interaction. The antibacterial efficacy was evaluated in vitro, by several techniques, and in vivo, using a wound infection model, showing a concentration-dependent antibacterial effect. Different membrane properties were evaluated to understand the mechanism underlying peptide action, showing that both promote destabilization of the bacterial surface, as imaged by AFM, and change properties such as membrane surface and dipole potential. CONCLUSIONS: Despite their similarity, data indicate that the mechanisms of action of the peptides are different, with Pa-MAP 1.9 being more effective than Pa-MAP 2. These results highlight their potential use as antimicrobial agents against MDR bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Escherichia coli , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Peptídeos
13.
Arch Biochem Biophys ; 704: 108858, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798534

RESUMO

Success rates in drug discovery are extremely low, and the imbalance between new drugs entering clinical research and their approval is steadily widening. Among the causes of the failure of new therapeutic agents are the lack of safety and insufficient efficacy. On the other hand, timely disease diagnosis may enable an early management of the disease, generally leading to better and less costly outcomes. Several strategies have been explored to overcome the barriers for drug development and facilitate diagnosis. Using lipid membranes as platforms for drug delivery or as biosensors are promising strategies, due to their biocompatibility and unique physicochemical properties. We examine some of the lipid membrane-based strategies for drug delivery and diagnostics, including their advantages and shortcomings. Regarding synthetic lipid membrane-based strategies for drug delivery, liposomes are the archetypic example of a successful approach, already with a long period of well-succeeded clinical application. The use of lipid membrane-based structures from biological sources as drug carriers, currently under clinical evaluation, is also discussed. These biomimetic strategies can enhance the in vivo lifetime of drug and delivery system by avoiding fast clearance, consequently increasing their therapeutic window. The strategies under development using lipid membranes for diagnostic purposes are also reviewed.


Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais , Lipídeos de Membrana , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Humanos , Lipossomos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/uso terapêutico
14.
J Nat Prod ; 84(6): 1787-1798, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34077221

RESUMO

Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Bothrops , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Antimicrobianos/química , Antiprotozoários/química , Catelicidinas , Células Cultivadas , Leishmania/efeitos dos fármacos , Macrófagos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , América do Sul
15.
Nature ; 527(7577): 204-7, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26560298

RESUMO

M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

16.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806504

RESUMO

Cholesterol is responsible for the plasticity of plasma membranes and is involved in physiological and pathophysiological responses. Cholesterol homeostasis is regulated by oxysterols, such as 25-hydroxycholesterol. The presence of 25-hydroxycholesterol at the membrane level has been shown to interfere with several viruses' entry into their target cells. We used atomic force microscopy to assess the effect of 25-hydroxycholesterol on different properties of supported lipid bilayers with controlled lipid compositions. In particular, we showed that 25-hydroxycholesterol inhibits the lipid-condensing effects of cholesterol, rendering the bilayers less rigid. This study indicates that the inclusion of 25-hydroxycholesterol in plasma membranes or the conversion of part of their cholesterol content into 25-hydroxycholesterol leads to morphological alterations of the sphingomyelin (SM)-enriched domains and promotes lipid packing inhomogeneities. These changes culminate in membrane stiffness variations.


Assuntos
Membrana Celular/química , Hidroxicolesteróis/química , Colesterol/química , Bicamadas Lipídicas/química , Lipídeos/química , Microscopia de Força Atômica/métodos , Esfingomielinas/química
17.
Arch Biochem Biophys ; 683: 108298, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045581

RESUMO

Intrinsically disordered protein regions are at the core of biological processes and involved in key protein-ligand interactions. The Flavivirus proteins, of viruses of great biomedical importance such as Zika and dengue viruses, exemplify this. Several proteins of these viruses have disordered regions that are of the utmost importance for biological activity. Disordered proteins can adopt several conformations, each able to interact with and/or bind to different ligands. In fact, such interactions can help stabilize a particular fold. Moreover, by being promiscuous in the number of target molecules they can bind to, these protein regions increase the number of functions that their small proteome (10 proteins) can achieve. A folding energy waterfall better describes the protein folding landscape of these proteins. A disordered protein can be thought as rolling down the folding energy cascade, in order "to fall, fold and function". This is the case of many viral protein regions, as seen in the flaviviruses proteome. Given their small size, flaviviruses are a good model system for understanding the role of intrinsically disordered protein regions in viral function. Finally, studying these viruses disordered protein regions will certainly contribute to the development of therapeutic approaches against such promising (yet challenging) targets.


Assuntos
Infecções por Flavivirus/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Virais/química , Animais , Vírus da Dengue/metabolismo , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteoma/metabolismo , Proteômica , Publicações , Resultado do Tratamento , Zika virus/metabolismo
18.
Nature ; 513(7518): 328-35, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25230654

RESUMO

Doppler spectroscopy was the first technique used to reveal the existence of extrasolar planetary systems hosted by solar-type stars. Radial-velocity surveys led to the detection of a rich population of super-Earths and Neptune-type planets. The numerous detected systems revealed a remarkable diversity. Combining Doppler measurements with photometric observations of planets transiting their host stars further provides access to the planet bulk density, a first step towards comparative exoplanetology. The development of new high-precision spectrographs and space-based facilities will ultimately lead us to characterize rocky planets in the habitable zone of our close stellar neighbours.

19.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265989

RESUMO

Discovering antibiotic molecules able to hold the growing spread of antimicrobial resistance is one of the most urgent endeavors that public health must tackle. The case of Gram-negative bacterial pathogens is of special concern, as they are intrinsically resistant to many antibiotics, due to an outer membrane that constitutes an effective permeability barrier. Antimicrobial peptides (AMPs) have been pointed out as potential alternatives to conventional antibiotics, as their main mechanism of action is membrane disruption, arguably less prone to elicit resistance in pathogens. Here, we investigate the in vitro activity and selectivity of EcDBS1R4, a bioinspired AMP. To this purpose, we have used bacterial cells and model membrane systems mimicking both the inner and the outer membranes of Escherichia coli, and a variety of optical spectroscopic methodologies. EcDBS1R4 is effective against the Gram-negative E. coli, ineffective against the Gram-positive Staphylococcus aureus and noncytotoxic for human cells. EcDBS1R4 does not form stable pores in E. coli, as the peptide does not dissipate its membrane potential, suggesting an unusual mechanism of action. Interestingly, EcDBS1R4 promotes a hemi-fusion of vesicles mimicking the inner membrane of E. coli. This fusogenic ability of EcDBS1R4 requires the presence of phospholipids with a negative curvature and a negative charge. This finding suggests that EcDBS1R4 promotes a large lipid spatial reorganization able to reshape membrane curvature, with interesting biological implications herein discussed.


Assuntos
Escherichia coli/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Ânions , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Cinética , Fusão de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/química , Conformação Proteica
20.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172206

RESUMO

Ctn[15-34], the C-terminal fragment of crotalicidin, an antimicrobial peptide from the South American rattlesnake Crotalus durissus terrificus venom, displays remarkable anti-infective and anti-proliferative activities. Herein, its activity on Candida albicans biofilms and its interaction with the cytoplasmic membrane of the fungal cell and with a biomembrane model in vitro was investigated. A standard C. albicans strain and a fluconazole-resistant clinical isolate were exposed to the peptide at its minimum inhibitory concentration (MIC) (10 µM) and up to 100 × MIC to inhibit biofilm formation and its eradication. A viability test using XTT and fluorescent dyes, confocal laser scanning microscopy, and atomic force microscopy (AFM) were used to observe the antibiofilm effect. To evaluate the importance of membrane composition on Ctn[15-34] activity, C. albicans protoplasts were also tested. Fluorescence assays using di-8-ANEPPS, dynamic light scattering, and zeta potential measurements using liposomes, protoplasts, and C. albicans cells indicated a direct mechanism of action that was dependent on membrane interaction and disruption. Overall, Ctn[15-34] showed to be an effective antifungal peptide, displaying antibiofilm activity and, importantly, interacting with and disrupting fungal plasma membrane.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Antifúngicos/farmacologia , Crotalus/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Venenos de Serpentes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA