RESUMO
Dizygostemon riparius (Plantaginaceae) is an aromatic herbal species known as "Melosa", endemic to the Municipality of São Benedito do Rio Preto, East Maranhão state, Brazil. It has a refreshing and pleasant aroma and is used for food flavoring and controlling domestic animal parasites. This work aimed to evaluate the seasonal and circadian influence on the composition and production of essential oils (EOs) from D. riparius. The plant aerial parts were hydrodistilled, and the oils were analyzed by GC and GC/MS. The seasonal study was conducted from Augustâ 2019 to Julyâ 2020, and the circadian study in dry (November) and rainy (May) periods, at 6â am, 12â am, and 6â pm. The results showed that the medium EOs yield was 2.8 %, and the primary constituents (>2 %) were endo-fenchyl acetate (30.5-42.1 %) and endo-fenchol (31.6-37.4 %), (E)-caryophyllene (2.8-7.6 %), α-fenchene (3.3-6.5 %), p-cymene (0.7-4.5 %), and caryophyllene oxide (1.4-2.7 %). Yield and composition of EOs did not significantly correlate with the climatic parameters, but their seasonal percentages influenced their two main components due to precipitation and solar radiation environmental factors. Quantitative variability in the EOs composition during the dry and rainy seasons was observed in the circadian period. These data may be significant for the plant's economic use.
Assuntos
Óleos Voláteis , Plantaginaceae , Animais , Estações do Ano , BrasilRESUMO
Myrciaria (Myrtaceae) species have been well investigated due to their chemical and biological relevance. The present work aimed to carry out the chemotaxonomic study of essential oils of the species M. dubia, M. floribunda, and M. tenella, sampled in the Brazilian Amazon and compare them with the volatile compositions from other Myrciaria species reported to Brazil and Colombia. The leaves of six Myrciaria specimens were collected (PA, Brazil) during the dry season, and their chemical compositions were analyzed by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID). The main compounds identified in the essential oils were monoterpenes with pinane and menthane skeletons, followed by sesquiterpenes with caryophyllane and cadinane skeletons. Among the sampled Myrciaria specimens, five chemical profiles were reported for the first time: profile I (M. dubia, α-pinene, 54.0-67.2%); profile II (M. floribunda, terpinolene 23.1%, α-phellandrene 17.7%, and γ-terpinene 8.7%); profile III (M. floribunda, γ-cadinene 17.5%, and an unidentified oxygenated sesquiterpene 15.0%); profile IV (M. tenella, E-caryophyllene 43.2%, and α-humulene 5.3%); and profile V (M. tenella, E-caryophyllene 19.1%, and caryophyllene oxide 41.1%). The Myrciaria chemical profiles showed significant variability in extraction methods, collection sites, plant parts, and genetic aspects.