Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; : e2309140, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342712

RESUMO

The successful translation of therapeutic nucleic acids (NAs) for the treatment of neurological disorders depends on their safe and efficient delivery to neural cells, in particular neurons. DNA nanostructures can be a promising NAs delivery vehicle. Nonetheless, the potential of DNA nanostructures for neuronal cell delivery of therapeutic NAs is unexplored. Here, tetrahedral DNA nanostructures (TDN) as siRNA delivery scaffolds to neuronal cells, exploring the influence of functionalization with two different reported neuronal targeting ligands: C4-3 RNA aptamer and Tet1 peptide are investigated. Nanostructures are characterized in vitro, as well as in silico using molecular dynamic simulations to better understand the overall TDN structural stability. Enhancement of neuronal cell uptake of TDN functionalized with the C4-3 Aptamer (TDN-Apt), not only in neuronal cell lines but also in primary neuronal cell cultures is demonstrated. Additionally, TDN and TDN-Apt nanostructures carrying siRNA are shown to promote silencing in a process aided by chloroquine-induced endosomal disruption. This work presents a thorough workflow for the structural and functional characterization of the proposed TDN as a nano-scaffold for neuronal delivery of therapeutic NAs and for targeting ligands evaluation, contributing to the future development of new neuronal drug delivery systems based on DNA nanostructures.

2.
Pharmaceutics ; 16(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794270

RESUMO

Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although evaluating the efficacy of pharmacological agents based on nanobiomaterials is crucial, conducting toxicological assessments of biomaterials is essential for advancing clinical translation. Here, a zebrafish larvae model was explored to assess the biocompatibility of poly(amido amine) (PAMAM), one of the most exploited dendrimers for drug delivery. We report the impact of a systemic injection of polyethylene glycol (PEG)-modified G4 PAMAM conjugated with rhodamine (Rho) as a mimetic drug (PEG-PAMAM-Rho) on survival, animal development, inflammation, and neurotoxicity. A concentration- and time-dependent effect was observed on mortality, developmental morphology, and innate immune system activation (macrophages). Significant effects in toxicological indicators were reported in the highest tested concentration (50 mg/mL PEG-PAMAM-Rho) as early as 48 h post-injection. Additionally, a lower concentration of PEG-PAMAM-Rho (5 mg/mL) was found to be safe and subsequently tested for neurotoxicity through behavioral assays. In accordance, no significative signs of toxicity were detected. In conclusion, the dose response of the animal was assessed, and the safe dosage for future use in theragnostics was defined. Additionally, new methodologies were established that can be adapted to further studies in toxicology using other nanosystems for systemic delivery.

3.
Pharmaceutics ; 15(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37111540

RESUMO

Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid ß peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.

4.
Bioelectrochemistry ; 154: 108553, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672968

RESUMO

Alzheimer's disease (AD) is the most common dementia type and a leading cause of death and disability in the elderly. Diagnosis is expensive and invasive, urging the development of new, affordable, and less invasive diagnostic tools. The identification of changes in the expression of non-coding RNAs prompts the development of diagnostic tools to detect disease-specific blood biomarkers. Building on this idea, this work reports a novel electrochemical microRNA (miRNA) biosensor for the diagnosis of AD, based on carbon screen-printed electrodes (C-SPEs) modified with two gold nanostructures and a complementary anti-miR-34a oligonucleotide probe. This biosensor showed good target affinity, reflected on a 100 pM to 1 µM linearity range and a limit of detection (LOD) of 39 pM in buffer and 94 aM in serum. Moreover, the biosensor's response was not affected by serum compounds, indicating selectivity for miR-34a. The biosensor also detected miR-34a in the cell culture medium of a common AD model, stimulated with a neurotoxin to increase miR-34a secretion. Overall, the proposed biosensor makes a solid case for the introduction of a novel, inexpensive, and minimally invasive tool for the early diagnosis of AD, based on the detection of a circulating miRNA overexpressed in this pathology.


Assuntos
Doença de Alzheimer , MicroRNAs , Idoso , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , MicroRNAs/genética , Carbono , Técnicas de Cultura de Células , Eletrodos
5.
Biomater Sci ; 11(14): 5012-5024, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37334774

RESUMO

Peptide amphiphiles (PAs) have emerged as effective molecular building blocks for creating self-assembling nanobiomaterials for multiple biomedical applications. Herein, we report a straightforward approach to assemble soft bioinstructive platforms to recreate the native neural extracellular matrix (ECM) aiming for neuronal regeneration based on the electrostatic-driven supramolecular presentation of laminin-derived IKVAV-containing self-assembling PA (IKVAV-PA) on biocompatible multilayered nanoassemblies. Spectroscopic and microscopic techniques show that the co-assembly of positively charged low-molecular-weight IKVAV-PA with oppositely charged high-molecular-weight hyaluronic acid (HA) triggers the formation of ordered ß-sheet structures denoting a one-dimensional nanofibrous network. The successful functionalization of poly(L-lysine)/HA layer-by-layer nanofilms with an outer positively charged layer of self-assembling IKVAV-PA is demonstrated by the quartz crystal microbalance with dissipation monitoring and the nanofibrous morphological properties revealed by atomic force microscopy. The bioactive ECM-mimetic supramolecular nanofilms promote the enhancement of primary neuronal cells' adhesion, viability, and morphology when compared to the PA without the IKVAV sequence and PA-free biopolymeric multilayered nanofilms, and stimulate neurite outgrowth. The nanofilms hold great promise as bioinstructive platforms for enabling the assembly of customized and robust multicomponent supramolecular biomaterials for neural tissue regeneration.


Assuntos
Matriz Extracelular , Peptídeos , Peptídeos/farmacologia , Peptídeos/química , Matriz Extracelular/química , Neurônios , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/análise , Crescimento Neuronal
6.
Pharmaceutics ; 12(2)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102252

RESUMO

Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.

7.
J Control Release ; 291: 65-79, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308255

RESUMO

Drug delivery to the central nervous system is restricted by the blood-brain barrier (BBB). However, with the onset of stroke, the BBB becomes leaky, providing a window of opportunity to passively target the brain. Here, cationic poly(amido amine) (PAMAM) dendrimers of different generations were functionalized with poly(ethylene glycol) (PEG) to reduce cytotoxicity and prolong blood circulation half-life, aiming for a safe in vivo drug delivery system in a stroke scenario. Rhodamine B isothiocyanate (RITC) was covalently tethered to the dendrimer backbone and used as a small surrogate drug as well as for tracking purposes. The biocompatibility of PAMAM was markedly increased by PEGylation as a function of dendrimer generation and degree of functionalization. The PEGylated RITC-modified dendrimers did not affect the integrity of an in vitro BBB model. Additionally, the functionalized dendrimers remained safe when in contact with the bEnd.3 cells and rat primary astrocytes composing the in vitro BBB model after hypoxia induced by oxygen-glucose deprivation. Modification with PEG also decreased the interaction and uptake by endothelial cells of PAMAM, indicating that the transport across a leaky BBB due to focal brain ischemia would be facilitated. Next, the functionalized dendrimers were tested in contact with red blood cells showing no haemolysis for the PEGylated PAMAM, in contrast to the unmodified dendrimer. Interestingly, the PEG-modified dendrimers reduced blood clotting, which may be an added beneficial function in the context of stroke. The optimized PAMAM formulation was intravenously administered in mice after inducing permanent focal brain ischemia. Twenty-four hours after administration, dendrimers could be detected in the brain, including in neurons of the ischemic cortex. Our results suggest that the proposed formulation has the potential for becoming a successful delivery vector for therapeutic application to the injured brain after stroke reaching the ischemic neurons.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Dendrímeros/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/farmacocinética , Animais , Astrócitos/metabolismo , Transporte Biológico , Isquemia Encefálica/metabolismo , Linhagem Celular , Células Cultivadas , Dendrímeros/análise , Dendrímeros/metabolismo , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Polietilenoglicóis/análise , Polietilenoglicóis/metabolismo , Ratos Wistar
8.
Front Cell Neurosci ; 10: 284, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018177

RESUMO

Neurogenesis in the subventricular zone (SVZ) is regulated by diffusible factors and cell-cell contacts. In vivo, SVZ stem cells are associated with the abluminal surface of blood vessels and such interactions are thought to regulate their neurogenic capacity. SVZ neural stem cells (NSCs) have been described to contact endothelial-derived laminin via α6ß1 integrin. To elucidate whether heterocellular contacts with brain endothelial cells (BEC) regulate SVZ cells neurogenic capacities, cocultures of SVZ neurospheres and primary BEC, both obtained from C57BL/6 mice, were performed. The involvement of laminin-integrin interactions in SVZ homeostasis was tested in three ways. Firstly, SVZ cells were analyzed following incubation of BEC with the protein synthesis inhibitor cycloheximide (CHX) prior to coculture, a treatment expected to decrease membrane proteins. Secondly, SVZ cells were cocultured with BEC in the presence of an anti-α6 integrin neutralizing antibody. Thirdly, BEC were cultured with ß1-/- SVZ cells. We showed that contact with BEC supports, at least in part, proliferation and stemness of SVZ cells, as evaluated by the number of BrdU positive (+) and Sox2+ cells in contact with BEC. These effects are dependent on BEC-derived laminin binding to α6ß1 integrin and are decreased in cocultures incubated with anti-α6 integrin neutralizing antibody and in cocultures with SVZ ß1-/- cells. Moreover, BEC-derived laminin sustains stemness in SVZ cell cultures via activation of the Notch and mTOR signaling pathways. Our results show that BEC/SVZ interactions involving α6ß1 integrin binding to laminin, contribute to SVZ cell proliferation and stemness.

9.
Mol Neurobiol ; 47(2): 632-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23086523

RESUMO

High levels of serum unconjugated bilirubin (UCB) in newborns are associated with axonal damage and glial reactivity that may contribute to subsequent neurologic injury and encephalopathy (kernicterus). Impairments in myelination and white matter damage were observed at autopsy in kernicteric infants. We have recently reported that UCB reduces oligodendrocyte progenitor cell (OPC) survival in a pure OPC in vitro proliferative culture. Here, we hypothesized that neonatal hyperbilirubinemia may also impair oligodendrocyte (OL) maturation and myelination. We used an experimental model of hyperbilirubinemia that has been shown to mimic the pathophysiological conditions leading to brain dysfunction by unbound (free) UCB. Using primary cultures of OL, we demonstrated that UCB delays cell differentiation by increasing the OPC number and reducing the number of mature OL. This finding was combined with a downregulation of Olig1 mRNA levels and upregulation of Olig2 mRNA levels. Addition of UCB, prior to or during differentiation, impaired OL morphological maturation, extension of processes and cell diameter. Both conditions reduced active guanosine triphosphate (GTP)-bound Rac1 fraction. In myelinating co-cultures of dorsal root ganglia neurons and OL, UCB treatment prior to the onset of myelination decreased oligodendroglial differentiation and the number of myelinating OL, also observed when UCB was added after the onset of myelination. In both circumstances, UCB decreased the number of myelin internodes per OL, as well as the myelin internode length. Our studies demonstrate that increased concentrations of UCB compromise myelinogenesis, thereby elucidating a potential deleterious consequence of elevated UCB.


Assuntos
Axônios/fisiologia , Bilirrubina/química , Bilirrubina/fisiologia , Diferenciação Celular/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Oligodendroglia/metabolismo , Animais , Animais Recém-Nascidos , Bovinos , Células Cultivadas , Humanos , Bainha de Mielina/fisiologia , Neurogênese/fisiologia , Oligodendroglia/citologia , Ratos , Ratos Wistar
10.
J Biol Chem ; 281(31): 21998-22003, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16751191

RESUMO

The hallmark of familial amyloid polyneuropathy (FAP) is the presence of extracellular deposits of transthyretin (TTR) aggregates and amyloid fibers in several tissues, particularly in the peripheral nervous system. The molecular pathways to neurodegeneration in FAP still remain elusive; activation of nuclear factor kappaB, pro-inflammatory cytokines, oxidative stress, and pro-apoptotic caspase-3 has been demonstrated "in vivo" in clinical samples and in cell culture systems. In this study, we investigated the involvement of endoplasmic reticulum (ER) stress response in FAP by showing activation of the classical unfolded protein response pathways in tissues not specialized in TTR synthesis but presenting extracellular TTR aggregate and fibril deposition. We also proved cytotoxicity by Ca2+ efflux from the ER in cell cultures incubated with TTR oligomers. Taken together, these studies evidence ER stress associated with a extracellular signal in a misfolding disorder.


Assuntos
Neuropatias Amiloides Familiares/patologia , Retículo Endoplasmático/metabolismo , Estresse Fisiológico , Amiloide/metabolismo , Neuropatias Amiloides Familiares/metabolismo , Animais , Cálcio/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Pré-Albumina/metabolismo , Dobramento de Proteína , Glândulas Salivares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA