Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Med Syst ; 47(1): 91, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610455

RESUMO

Infertility has massively disrupted social and marital life, resulting in stressful emotional well-being. Early diagnosis is the utmost need for faster adaption to respond to these changes, which makes possible via AI tools. Our main objective is to comprehend the role of AI in fertility detection since we have primarily worked to find biomarkers and related risk factors associated with infertility. This paper aims to vividly analyse the role of AI as an effective method in screening, predicting for infertility and related risk factors. Three scientific repositories: PubMed, Web of Science, and Scopus, are used to gather relevant articles via technical terms: (human infertility OR human fertility) AND risk factors AND (machine learning OR artificial intelligence OR intelligent system). In this way, we systematically reviewed 42 articles and performed a meta-analysis. The significant findings and recommendations are discussed. These include the rising importance of data augmentation, feature extraction, explainability, and the need to revisit the meaning of an effective system for fertility analysis. Additionally, the paper outlines various mitigation actions that can be employed to tackle infertility and its related risk factors. These insights contribute to a better understanding of the role of AI in fertility analysis and the potential for improving reproductive health outcomes.


Assuntos
Inteligência Artificial , Infertilidade , Humanos , Fertilidade , Emoções , Aprendizado de Máquina
2.
J Med Syst ; 46(11): 82, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241922

RESUMO

There has been an explosive growth in research over the last decade exploring machine learning techniques for analyzing chest X-ray (CXR) images for screening cardiopulmonary abnormalities. In particular, we have observed a strong interest in screening for tuberculosis (TB). This interest has coincided with the spectacular advances in deep learning (DL) that is primarily based on convolutional neural networks (CNNs). These advances have resulted in significant research contributions in DL techniques for TB screening using CXR images. We review the research studies published over the last five years (2016-2021). We identify data collections, methodical contributions, and highlight promising methods and challenges. Further, we discuss and compare studies and identify those that offer extension beyond binary decisions for TB, such as region-of-interest localization. In total, we systematically review 54 peer-reviewed research articles and perform meta-analysis.


Assuntos
Aprendizado Profundo , Tuberculose , Humanos , Redes Neurais de Computação , Radiografia , Tuberculose/diagnóstico por imagem , Raios X
3.
Inf Sci (N Y) ; 592: 389-401, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36532848

RESUMO

Chest X-ray (CXR) imaging is a low-cost, easy-to-use imaging alternative that can be used to diagnose/screen pulmonary abnormalities due to infectious diseaseX: Covid-19, Pneumonia and Tuberculosis (TB). Not limited to binary decisions (with respect to healthy cases) that are reported in the state-of-the-art literature, we also consider non-healthy CXR screening using a lightweight deep neural network (DNN) with a reduced number of epochs and parameters. On three diverse publicly accessible and fully categorized datasets, for non-healthy versus healthy CXR screening, the proposed DNN produced the following accuracies: 99.87% on Covid-19 versus healthy, 99.55% on Pneumonia versus healthy, and 99.76% on TB versus healthy datasets. On the other hand, when considering non-healthy CXR screening, we received the following accuracies: 98.89% on Covid-19 versus Pneumonia, 98.99% on Covid-19 versus TB, and 100% on Pneumonia versus TB. To further precisely analyze how well the proposed DNN worked, we considered well-known DNNs such as ResNet50, ResNet152V2, MobileNetV2, and InceptionV3. Our results are comparable with the current state-of-the-art, and as the proposed CNN is light, it could potentially be used for mass screening in resource-constraint regions.

4.
Inf Process Manag ; 59(2): 102810, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35165495

RESUMO

Starting from December 2019, the novel COVID-19 threatens human lives and economies across the world. It was a matter of grave concern for the governments of all the countries as the deadly virus started expanding its paws over neighboring regions of infected areas. The spread got uncontrollable, thereby leaving no choice for the nations but to impose and observe nationwide lockdown. The lockdown further sorely hit many sectors, which in turn impacted the economy. Manufacturing, agriculture, and the service sector - the three pillars of the economy - have been adversely affected giving a major slow down to the economy belonging to every nation. Several schemes and policies were introduced by different state and central governments to absorb the impact of subsequent lockdowns on individuals. In this paper, we present a then and now analysis of the economy using a socioeconomic framework focusing on factors- unemployment, industrial production, import-export trade, equity markets, currency exchange rate, and gold and silver prices. For all these, we consider India as a case study because the Indian sub-continent has a wide landscape and rich cultural heritage presenting itself as a potential hub for economic activities. A thorough assessment has been made for the period January 2020- June 2020. The assessment will be beneficial to observe the long-term impact of any infectious disease outbreak such as COVID-19 locally and globally.

5.
J Med Syst ; 45(7): 71, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081193

RESUMO

In this paper, considering year 2020 and Covid-19, we analyze medical imaging tools and their performance scores in accordance with the dataset size and their complexity. For this, we mainly consider AI-driven tools that employ two different types of image data, namely chest Computed Tomography (CT) and X-ray. We elaborate on their strengths and weaknesses by taking the following important factors into account: i) dataset size; ii) model fitting criteria (over-fitting and under-fitting); iii) transfer learning in the deep learning era; and iv) data augmentation. Medical imaging tools do not explicitly analyze model fitting. Also, using transfer learning, with fewer data, one could possibly build Covid-19 deep learning model but they are limited to education and training. We observe that, in both image modalities, neither the dataset size nor does data augmentation work well for Covid-19 screening purposes because a large dataset does not guarantee all possible Covid-19 manifestations and data augmentation does not create new Covid-19 cases.


Assuntos
Big Data , COVID-19/diagnóstico por imagem , Radiografia Torácica , Tomografia Computadorizada por Raios X , Aprendizado Profundo , Humanos
6.
J Med Syst ; 45(2): 19, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33426615

RESUMO

Significant changes have been made on audio-based technologies over years in several different fields. Healthcare is no exception. One of such avenues is health screening based on respiratory sounds. In this paper, we developed a tool to detect respiratory sounds that come from respiratory infection carrying patients. Linear Predictive Cepstral Coefficient (LPCC)-based features were used to characterize such audio clips. With Multilayer Perceptron (MLP)-based classifier, in our experiment, we achieved the highest possible accuracy of 99.22% that was tested on a publicly available respiratory sounds dataset (ICBHI17) (Rocha et al. Physiol. Meas. 40(3):035,001 20) of size 6800+ clips. In addition to other popular machine learning classifiers, our results outperformed common works that exist in the literature.


Assuntos
Pulmão , Sons Respiratórios , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Sons Respiratórios/diagnóstico
7.
J Med Syst ; 45(4): 51, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687570

RESUMO

Imaging techniques widely use Computed Tomography (CT) scans for various purposes, such as screening, diagnosis, and decision-making. Of all, it holds true for bone injuries. To build fully automated Computer-Aided Detection (CADe) and Diagnosis (CADx) tools and techniques, it requires fairly large amount of data (with gold standard). Therefore, in this paper, since state-of-the-art works relied on small dataset, we introduced a CT image dataset on limbs that is designed to understand bone injuries. Our dataset is a collection of 24 patient-specific CT cases having fractures at upper and lower limbs. From upper limbs, 8 cases were collected from bones in/around the shoulder (left and right). Similarly, from lower limbs, 16 cases were collected from knees (left and right). Altogether, 5684 CT images (upper limbs: 2057 and lower limbs: 3627) were collected. Each patient-specific CT case is composed of maximum 257 scans/slices in average. Of all, clinically approved annotations were made on every 10th slices, resulting in 1787 images. Importantly, no fractured limbs were missed in our annotation. Besides, to avoid privacy and confidential issues, patient-related information were deleted. The proposed dataset could be a promising resource for the medical imaging research community, where imaging techniques are employed for various purposes. To the best of our knowledge, this is the first time 5K+ CT images on fractured limbs are provided for research and educational purposes.


Assuntos
Fraturas Ósseas , Tomografia Computadorizada por Raios X , Fraturas Ósseas/diagnóstico por imagem , Humanos , Radiografia
8.
Appl Intell (Dordr) ; 51(5): 2777-2789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764562

RESUMO

Since December 2019, the novel COVID-19's spread rate is exponential, and AI-driven tools are used to prevent further spreading [1]. They can help predict, screen, and diagnose COVID-19 positive cases. Within this scope, imaging with Computed Tomography (CT) scans and Chest X-rays (CXRs) are widely used in mass triage situations. In the literature, AI-driven tools are limited to one data type either CT scan or CXR to detect COVID-19 positive cases. Integrating multiple data types could possibly provide more information in detecting anomaly patterns due to COVID-19. Therefore, in this paper, we engineered a Convolutional Neural Network (CNN) -tailored Deep Neural Network (DNN) that can collectively train/test both CT scans and CXRs. In our experiments, we achieved an overall accuracy of 96.28% (AUC = 0.9808 and false negative rate = 0.0208). Further, major existing DNNs provided coherent results while integrating CT scans and CXRs to detect COVID-19 positive cases.

9.
J Med Syst ; 44(9): 170, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32794042

RESUMO

For COVID-19, predictive modeling, in the literature, uses broadly SEIR/SIR, agent-based, curve-fitting techniques/models. Besides, machine-learning models that are built on statistical tools/techniques are widely used. Predictions aim at making states and citizens aware of possible threats/consequences. However, for COVID-19 outbreak, state-of-the-art prediction models are failed to exploit crucial and unprecedented uncertainties/factors, such as a) hospital settings/capacity; b) test capacity/rate (on a daily basis); c) demographics; d) population density; e) vulnerable people; and f) income versus commodities (poverty). Depending on what factors are employed/considered in their models, predictions can be short-term and long-term. In this paper, we discuss how such continuous and unprecedented factors lead us to design complex models, rather than just relying on stochastic and/or discrete ones that are driven by randomly generated parameters. Further, it is a time to employ data-driven mathematically proved models that have the luxury to dynamically and automatically tune parameters over time.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Previsões , Modelos Estatísticos , Pandemias , Pneumonia Viral , COVID-19 , Confiabilidade dos Dados , Surtos de Doenças , Humanos , Aprendizado de Máquina , SARS-CoV-2
10.
J Med Syst ; 44(5): 93, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32189081

RESUMO

The novel coronavirus (COVID-19) outbreak, which was identified in late 2019, requires special attention because of its future epidemics and possible global threats. Beside clinical procedures and treatments, since Artificial Intelligence (AI) promises a new paradigm for healthcare, several different AI tools that are built upon Machine Learning (ML) algorithms are employed for analyzing data and decision-making processes. This means that AI-driven tools help identify COVID-19 outbreaks as well as forecast their nature of spread across the globe. However, unlike other healthcare issues, for COVID-19, to detect COVID-19, AI-driven tools are expected to have active learning-based cross-population train/test models that employs multitudinal and multimodal data, which is the primary purpose of the paper.


Assuntos
Algoritmos , Inteligência Artificial , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Aprendizado de Máquina , Pneumonia Viral/epidemiologia , COVID-19 , Infecções por Coronavirus/diagnóstico , Tomada de Decisões , Atenção à Saúde , Previsões , Humanos , Pneumonia Viral/diagnóstico
11.
J Med Syst ; 43(3): 60, 2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30710217

RESUMO

Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.


Assuntos
Fraturas Ósseas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Fraturas Ósseas/patologia , Humanos , Índices de Gravidade do Trauma
12.
J Med Syst ; 42(9): 168, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30073548

RESUMO

Precise simulators can replicate complete understanding of the models. In this survey, we focus on orthopedic simulators that are not only in replicating real-world models but also in educating with complete procedure: surgical, for instance. It covers 18 hip replacement, three-knee replacement, three facial surgeries, one spine surgery and six orthopedic psycho-motor skills training and assessment-based simulators. We also provide comparative studies and highlight current trends and possible challenges. We observed that orthopedic training methodologies have undergone a paradigm shift. This means that the simulators replace the use of sensitive hospital settings for training and skill acquisition. In brief, we address classified overview on existing orthopedic simulators: physical and Virtual Reality (VR)-based simulators. Key steps to develop computer-assisted, VR-based simulator are explored. Experts' opinion on the use of simulation technologies in the field of orthopedics is discussed.


Assuntos
Destreza Motora , Interface Usuário-Computador , Realidade Virtual , Competência Clínica , Simulação por Computador , Procedimentos Ortopédicos
13.
J Med Syst ; 42(8): 146, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959539

RESUMO

To detect pulmonary abnormalities such as Tuberculosis (TB), an automatic analysis and classification of chest radiographs can be used as a reliable alternative to more sophisticated and technologically demanding methods (e.g. culture or sputum smear analysis). In target areas like Kenya TB is highly prevalent and often co-occurring with HIV combined with low resources and limited medical assistance. In these regions an automatic screening system can provide a cost-effective solution for a large rural population. Our completely automatic TB screening system is processing the incoming CXRs (chest X-ray) by applying image preprocessing techniques to enhance the image quality followed by an adaptive segmentation based on model selection. The delineated lung regions are described by a multitude of image features. These characteristics are than optimized by a feature selection strategy to provide the best description for the classifier, which will later decide if the analyzed image is normal or abnormal. Our goal is to find the optimal feature set from a larger pool of generic image features, -used originally for problems such as object detection, image retrieval, etc. For performance evaluation measures such as under the curve (AUC) and accuracy (ACC) were considered. Using a neural network classifier on two publicly available data collections, -namely the Montgomery and the Shenzhen dataset, we achieved the maximum area under the curve and accuracy of 0.99 and 97.03%, respectively. Further, we compared our results with existing state-of-the-art systems and to radiologists' decision.


Assuntos
Algoritmos , Radiografia , Tuberculose/diagnóstico por imagem , Automação , Humanos , Programas de Rastreamento , Escarro
15.
IEEE Trans Pattern Anal Mach Intell ; 46(7): 4763-4779, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38265905

RESUMO

Meta-learning empowers learning systems with the ability to acquire knowledge from multiple tasks, enabling faster adaptation and generalization to new tasks. This review provides a comprehensive technical overview of meta-learning, emphasizing its importance in real-world applications where data may be scarce or expensive to obtain. The article covers the state-of-the-art meta-learning approaches and explores the relationship between meta-learning and multi-task learning, transfer learning, domain adaptation and generalization, self-supervised learning, personalized federated learning, and continual learning. By highlighting the synergies between these topics and the field of meta-learning, the article demonstrates how advancements in one area can benefit the field as a whole, while avoiding unnecessary duplication of efforts. Additionally, the article delves into advanced meta-learning topics such as learning from complex multi-modal task distributions, unsupervised meta-learning, learning to efficiently adapt to data distribution shifts, and continual meta-learning. Lastly, the article highlights open problems and challenges for future research in the field. By synthesizing the latest research developments, this article provides a thorough understanding of meta-learning and its potential impact on various machine learning applications. We believe that this technical overview will contribute to the advancement of meta-learning and its practical implications in addressing real-world problems.

16.
Healthcare (Basel) ; 11(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36766883

RESUMO

The presence of non-biomedical foreign objects (NBFO), such as coins, buttons and jewelry, and biomedical foreign objects (BFO), such as medical tubes and devices in chest X-rays (CXRs), make accurate interpretation difficult, as they do not indicate known biological abnormalities like excess fluids, tuberculosis (TB) or cysts. Such foreign objects need to be detected, localized, categorized as either NBFO or BFO, and removed from CXR or highlighted in CXR for effective abnormality analysis. Very specifically, NBFOs can adversely impact the process, as typical machine learning algorithms would consider these objects to be biological abnormalities producing false-positive cases. It holds true for BFOs in CXRs. This paper examines detailed discussions on numerous clinical reports in addition to computer-aided detection (CADe) with diagnosis (CADx) tools, where both shallow learning and deep learning algorithms are applied. Our discussion reflects the importance of accurately detecting, isolating, classifying, and either removing or highlighting NBFOs and BFOs in CXRs by taking 29 peer-reviewed research reports and articles into account.

17.
Int J Mach Learn Cybern ; : 1-12, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36817940

RESUMO

Machine learning is an effective and accurate technique to diagnose COVID-19 infections using image data, and chest X-Ray (CXR) is no exception. Considering privacy issues, machine learning scientists end up receiving less medical imaging data. Federated Learning (FL) is a privacy-preserving distributed machine learning paradigm that generates an unbiased global model that follows local model (from clients) without exposing their personal data. In the case of heterogeneous data among clients, vanilla or default FL mechanism still introduces an insecure method for updating models. Therefore, we proposed SecureFed-a secure aggregation method-which ensures fairness and robustness. In our experiments, we employed COVID-19 CXR dataset (of size 2100 positive cases) and compared it with the existing FL frameworks such as FedAvg, FedMGDA+, and FedRAD. In our comparison, we primarily considered robustness (accuracy) and fairness (consistency). As the SecureFed produced consistently better results, it is generic enough to be considered for multimodal data.

18.
Healthcare (Basel) ; 11(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046855

RESUMO

Infertility is a social stigma for individuals, and male factors cause approximately 30% of infertility. Despite this, male infertility is underrecognized and underrepresented as a disease. According to the World Health Organization (WHO), changes in lifestyle and environmental factors are the prime reasons for the declining rate of male fertility. Artificial intelligence (AI)/machine learning (ML) models have become an effective solution for early fertility detection. Seven industry-standard ML models are used: support vector machine, random forest (RF), decision tree, logistic regression, naïve bayes, adaboost, and multi-layer perception to detect male fertility. Shapley additive explanations (SHAP) are vital tools that examine the feature's impact on each model's decision making. On these, we perform a comprehensive comparative study to identify good and poor classification models. While dealing with the all-above-mentioned models, the RF model achieves an optimal accuracy and area under curve (AUC) of 90.47% and 99.98%, respectively, by considering five-fold cross-validation (CV) with the balanced dataset. Furthermore, we provide the SHAP explanations of existing models that attain good and poor performance. The findings of this study show that decision making (based on ML models) with SHAP provides thorough explanations for detecting male fertility, as well as a reference for clinicians for further treatment planning.

19.
Healthcare (Basel) ; 11(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685422

RESUMO

The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March 2020 due to its rapid and widespread transmission. Its impact has had profound implications, particularly in the realm of public health. Extensive scientific endeavors have been directed towards devising effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the application of artificial intelligence (AI) has brought significant advantages. This study delves into peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep learning algorithms in facilitating decision making processes. Our exploration encompasses various facets, including data collection, systematic contributions, emerging techniques, and encountered challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the detection, localization, and segmentation of COVID-19 cases are primarily centered on educational and training contexts. We deliberate on their merits and constraints, particularly in the context of necessitating cross-population train/test models. Our analysis encompassed a review of 231 research publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed Central Repository and Web of Science platforms.

20.
PeerJ Comput Sci ; 8: e958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634112

RESUMO

For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA