Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Microorganisms ; 10(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208923

RESUMO

Antibiotic resistance in pneumococci contributes to the high pneumococcal deaths in children. We assessed the molecular characteristics of multidrug-resistant (MDR) pneumococci isolated from healthy vaccinated children under five years of age in Cape Coast, Ghana. A total of 43 MDR isolates were selected from 151 pneumococcal strains obtained from nasopharyngeal carriage. All isolates were previously serotyped by multiplex PCR and Quellung reaction. Susceptibility testing was performed using either the E-test or disk diffusion method. Virulence and antibiotic resistance genes were identified by PCR. Molecular epidemiology was analyzed using multilocus sequence typing (MLST). Vaccine-serotypes 23F and 19F were predominant. The lytA and pavB virulence genes were present in all isolates, whiles 14-86% of the isolates carried pilus-islets 1 and 2, pcpA, and psrP genes. Penicillin, tetracycline, and cotrimoxazole resistance were evident in >90% of the isolates. The ermB, mefA, and tetM genes were detected in (n = 7, 16.3%), (n = 4, 9.3%) and (n = 43, 100%) of the isolates, respectively. However, >60% showed alteration in the pbp2b gene. MLST revealed five novel and six known sequence types (STs). ST156 (Spain9V-3) and ST802 were identified as international antibiotic-resistant clones. The emergence of international-MDR clones in Ghana requires continuous monitoring of the pneumococcus through a robust surveillance system.

2.
Microorganisms ; 10(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296330

RESUMO

Preventive strategies involving the use of pneumococcal conjugate vaccines (PCVs) are known to drastically reduce pneumococcal disease. However, PCV vaccination has been plagued with serotype replacement by non-PCV serotypes. In this study, we describe the prevalence and molecular characteristics of non-PCV13 serotypes (non-vaccine serotypes, NVTs) from pneumococcal carriage isolates obtained from children < 5 years old in Cape Coast, Ghana, after PCV introduction. The isolates were subjected to antibiotic susceptibility testing and multilocus sequence typing (MLST), and molecular techniques were used to detect the presence of virulence genes. Serotypes 11A, 13, 15B, 23B, and 34 formed the top five of the 93 NVT isolates. As such, 20 (21.5%), 49 (48.4%), and 70 (74.3%) isolates were non-susceptible to penicillin, tetracycline, and cotrimoxazole, respectively. Sixteen (17.2%) multidrug-resistant isolates were identified. However, non-susceptibility to ceftriaxone and erythromycin was low and all isolates were fully susceptible to levofloxacin, linezolid, and vancomycin. Whereas pcpA, pavB, lytA, and psrP genes were detected in nearly all serotypes, pilus islet genes were limited to serotypes 11A, 13, and 23B. MLST for predominant serotype 23B isolates revealed three known and seven novel sequence types (STs). ST172 and novel ST15111 were the most dominant and both STs were related to PMEN clone Columbia23F-26 (ST338). In conclusion, non-PCV13 serotype 23B was the most prevalent, with characteristics of rapid clonal expansion of ST172 and ST15111, which are related to international clones of the pneumococcus. Continuous monitoring of NVTs in Ghana is, therefore, essential, as they have the potential to cause invasive disease, show high antibiotic resistance, and attenuate the effects of PCV vaccination.

3.
Microorganisms ; 8(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322236

RESUMO

In 2012, Ghana introduced PCV13 into its childhood immunization program. To monitor the pneumococcus after PCV13 vaccination, we analyzed serotypes, antibiotic resistance, and virulence genes of pneumococcal carriage isolates among children under five years of age. We obtained nasopharyngeal swabs from 513 children from kindergartens and immunization centers in Cape Coast, Ghana. Pneumococcal serotypes were determined by multiplex-PCR and Quellung reaction. Antibiotic resistance and virulence genes prevalence were determined by disc diffusion and PCR respectively. Overall, carriage prevalence was 29.4% and PCV13 coverage was 38.4%. Over 60% of the isolates were non-PCV13 serotypes and serotype 23B was the most prevalent. One isolate showed full resistance to penicillin, while 35% showed intermediate resistance. Resistance to erythromycin and clindamycin remained low, while susceptibility to ceftriaxone, levofloxacin and vancomycin remained high. Penicillin resistance was associated with PCV13 serotypes. Forty-three (28.5%) strains were multidrug-resistant. Virulence genes pavB, pcpA, psrP, pilus-1, and pilus-2 were detected in 100%, 87%, 62.9%, 11.9%, and 6.6% of the strains, respectively. The pilus islets were associated with PCV13 and multidrug-resistant serotypes. PCV13 vaccination had impacted on pneumococcal carriage with a significant increase in non-PCV13 serotypes and lower penicillin resistance. Including PcpA and PsrP in pneumococcal protein-based vaccines could be beneficial to Ghanaian children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA