RESUMO
Cholinergic drugs can modulate anaphylactic shock and change lymphocyte functions. Plasma proteins modulate effects of muscarinic antagonists during anaphylactic shock. The present investigation was carried out to study the antianaphylactic activity of methacine (antagonist at muscarinic receptors) in combination with neostigmine (anticholinesterase drug). However, it is not known whether plasma proteins-albumin, C-reactive protein (CRP) and immunoglobulin G (IgG) - modify the effects of cholinergic drugs like methacine, serotonin (5-HT) level in the lymphoid organs and quantity of antibody-forming cells (AFC) in the spleen of guinea pigs during experimental anaphylactic shock. It was shown that administration of methacine with neostigmine (40 min and 15 min prior to shock induction, accordingly) at the pathochemical stage revokes shock development. By blocking cholinesterase endogenous acetylcholine is increased and methacine blocks muscarinic receptors and therewith unwanted side effects in the airways (bronchoconstriction) and heart (bradycardia). Administration of the combination of methacine with neostigmine at the immunological stage (guinea pig sensitization) does not affect the course of anaphylactic shock. Administration of methacine with IgG at the pathochemical stage of shock significantly decreases shock intensity, while administration of methacine with CRP or albumin has no influence on the shock. Administration of IgG or CRP (not albumin) at the immunological stage of shock and albumin or IgG (not CRP) at the pathochemical stage leads to reduction of the anaphylactic reaction. Application of methacine with neostigmine or IgG (effective combinations of drugs) results in normalization of antibody response in the spleen and 5-HT level in the lymphoid organs. Administration of methacine with CRP or albumin (ineffective combinations of drugs) leads to increase of antibody response in the spleen and 5-HT level in the lymphoid organs. Administration of hexamethonium or aceclidine aggravated anaphylactic shock reaction. Thus, the combination of methacine with neostigmine can regulate the pathochemical stage of shock and the 5-HT release. At the pathochemical stage of shock IgG increases the antianaphylactic activity of methacine, but albumin and CRP abolish it.
Assuntos
Anafilaxia/prevenção & controle , Colinérgicos/farmacologia , Neostigmina/farmacologia , Oxifenônio/farmacologia , Anafilaxia/imunologia , Anafilaxia/metabolismo , Animais , Proteínas Sanguíneas/farmacologia , Proteína C-Reativa/farmacologia , Inibidores da Colinesterase/farmacologia , Sinergismo Farmacológico , Cobaias , Imunoglobulina G/farmacologia , Masculino , Antagonistas Muscarínicos/farmacologia , Serotonina/metabolismo , Albumina Sérica/farmacologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismoRESUMO
The activity of mitochondrial ATP-dependent potassium channel (mitoKATP) of rat heart and liver mitochondria was shown to decrease during aging. This partially explains the increase of risk of ischemia at a mature age since mitoKATP activation provides cardioprotection. We demonstrated that uridine-5'-diphosphate (UDP) possesses the property to activate mitoKATP. At a concentration of 30 microM, it reactivated mitoKATP in mitochondria, and 5-hydroxydecanoate (5-HD) eliminated this effect. In experimental animals, UDP precursors uridine and uridine-5'-monophosphate (UMP) (both 30 mg/kg, administered intravenously 5 min before coronary occlusion) decreased the myocardium ischemic alteration index (1.9 and 3.5 times, respectively) and the T-wave amplitude within 60 min after occlusion. Both effects were inhibited by Glibenclamide (Glib) and 5-HD. UMP and uridine decreased the number of premature ventricular beats 5.6 and 1.9 times and the duration of ventricular tachycardia 9.4 and 4.1 times, respectively. Glib and 5-HD inhibited the anti-arrhythmic parameters, 5-HD being less effective. Uridine and UMP decreased the duration of fibrillation 10.8 and 3.6 times, respectively, and this effect was not abolished by Glib and 5-HD. Thus, uridine and UMP, which are the precursors of UDP in the cell, possess cardioprotective properties. MitoKATP prevents mainly ischemic injuries and partially rhythm disorders.
Assuntos
Coração/efeitos dos fármacos , Canais de Potássio/fisiologia , Uridina Monofosfato/farmacologia , Uridina/farmacologia , Animais , Antiarrítmicos/farmacologia , Eletrocardiografia/efeitos dos fármacos , Masculino , Isquemia Miocárdica/tratamento farmacológico , Ratos , Ratos Wistar , Difosfato de Uridina/farmacologiaRESUMO
Aim of the present study was to evaluate the effects of physical stressors (electric foot-shocks) on effect of the antidepressant drug, clomipramine and plasma corticosterone levels in male and female rats tested in a model of behavioral despair (forced swim test,). Male and female rats of the Wistar strain were injected with clomipramine (50 mg/kg, i.p.) or saline. A group of animals also received electric shocks of different intensity and duration of 24, 5 and 1 h before being subjected to forced swim test. At the end of behavioral procedures, vaginal smears were assessed in all female animals and data on immobility time were plotted according to the ovarian cycle phase. After decapitation, corticosterone plasma levels were measured by radioimmunoassay in both male and female rats. Application of mild shocks (5 ms, 0.1 mA) significantly reduced immobility time in forced swim test of untreated male rats and augmented clomipramine effect on this parameter. Moderate shocks of higher intensity or duration (5 ms, 1.0 mA) also resulted in decreased immobility time of untreated male rats, but in reduced effect of clomipramine treatment. Furthermore, application of severe shocks (10 ms, 1.0 mA) increased the immobility time in untreated animals and totally abolished clomipramine effect in forced swim test. Untreated non-shocked female rats in proestrous and estrous phases exhibited a longer immobility time as compared to diestrous animals. Immobility time appeared to be generally higher when mild, moderate or severe shocks were applied prior to behavioral testing in proestrous and estrous animals, while the behavioral response of diestrous and metestrous animals did not differ from that of controls. Clomipramine effect on immobility time was generally reduced by application of shocks of every strengths. Stress-induced plasma corticosterone levels surge correlated with intensity and duration of shocks in both male and female rats, but clomipramine treatment generally blunted the hormonal response. However, severe shocks were followed by a surge of plasma corticosterone levels in both male and female clomipramine-treated rats. These results demonstrate that duration and intensity of stressful stimuli may deeply affect the behavioral response of rats in forced swim test and influence clomipramine effect in this behavioral model depending on gender-based variables, probably of the hormonal type. Plasma corticosterone levels correlate with the behavioral response to clomipramine treatment suggesting that reactivity of hypothalamus-pituitary-adrenal axis to stress may be involved in the antidepressant effect of this drug.