RESUMO
BACKGROUND AND OBJECTIVE: Cognitive impairment is among the most burdensome non-motor symptoms in Parkinson's disease (PD) and has been associated with hippocampal atrophy. Exercise has been reported to enhance neuroplasticity in the hippocampus in correlation with an improvement of cognitive function. We present data from the Training-PD study, which was designed to evaluate effects of an "" training protocol on neuronal plasticity in PD. METHODS: We initiated a 6-week exergaming training program, combining visually stimulating computer games with physical exercise in 17 PD patients and 18 matched healthy controls. Volumetric segmentation of hippocampal subfields on T1- and T2-weighted magnetic resonance imaging and brain-derived neurotrophic factor (BDNF) serum levels were analyzed before and after the training protocol. RESULTS: The PD group showed a group-dependent significant volume increase of the left hippocampal subfields CA1, CA4/dentate gyrus (DG) and subiculum after the 6-week training protocol. The effect was most pronounced in the left DG of PD patients, who showed a significantly smaller percentage volume compared to healthy controls at baseline, but not at follow-up. Both groups had a significant increase in serum BDNF levels after training. CONCLUSIONS: The results of the present study indicate that exergaming might be a suitable approach to induce hippocampal volume changes in PD patients. Further and larger studies are needed to verify our findings.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Atrofia/patologia , Jogos Eletrônicos de Movimento , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapiaRESUMO
Introduction: Impairment of dual-tasking, as an attention-based primary cognitive dysfunction, is frequently observed in Parkinson's Disease (PD). The Training-PD study investigated the efficiency of exergaming, as a novel cognitive-motor training approach, to improve attention-based deficits and dual-tasking in PD when compared to healthy controls. Methods: Eighteen PD patients and 17 matched healthy controls received a 6-week home-based training period of exergaming. Treatment effects were monitored using quantitative motor assessment of gait and cognitive testing as baseline and after 6 weeks of training. Results: At baseline PD patients showed a significantly worse performance in several quantitative motor assessment parameters and in two items of cognitive testing. After 6 weeks of exergames training, the comparison of normal gait vs. dual-tasking in general showed an improvement of stride length in the PD group, without a gait-condition specific improvement. In the direct comparison of three different gait conditions (normal gait vs. dual-tasking calculating while walking vs. dual-tasking crossing while walking) PD patients showed a significant improvement of stride length under the dual-tasking calculating condition. This corresponded to a significant improvement in one parameter of the D2 attention test. Conclusions: We conclude, that exergaming, as an easy to apply, safe technique, can improve deficits in cognitive-motor dual-tasking and attention in PD.