Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(1)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37607504

RESUMO

The development of sensing technologies and miniaturization allows for the development of smart systems with elevated sensing performance. Silicon-based hydrogen sensors have received a lot of attention due to its electrical conductivity and the mechanical endurance. With this motivation, we have proposed a two-terminal silicon-based device in a crossbar architecture as a hydrogen gas sensing platform. In this work, we have adopted a multi-layer modeling approach to analyze the performance of the proposed system. Technology computer-aided design models have been used to capture device performance. A gas sensor model based on hydrogen adsorption on the Palladium surface and a crossbar model has been adopted to understand the Palladium work function variation with gas pressure and the performance of the proposed crossbar system respectively. We have shown the impact of parameters like interconnect resistance and array size on the whole system's performance. Finally, a comprehensive analysis has been provided for the design rule of this architecture. A fabrication process to spur future experimental works has also been added. This work will provide computational insight into the performance of a crossbar hydrogen sensor system, optimized against some critical parameters.

2.
J Comput Electron ; 20(6): 2594-2603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34608380

RESUMO

We propose and investigate a biosensor based on a transparent dielectric-modulated dual-trench gate-engineered metal-oxide-semiconductor field-effect transistor (DM DT GE-MOSFET) for label-free detection of biomolecules with enhanced sensitivity and efficiency. Various sensing parameters such as the I ON/I OFF ratio and the threshold voltage shift are evaluated as metrics to validate the proposed sensing device. Additionally, S Vth (the V th sensitivity) is also analyzed, considering both positively and negatively charged biomolecules. In addition, radiofrequency (RF) sensing parameters such as the transconductance gain and the cutoff frequency are taken into account to provide further insight into the sensitivity of the proposed device. Furthermore, the linearity, distortion, and noise immunity of the device are evaluated to confirm the overall performance of the biosensor at high (GHz) frequency. The results indicate that the proposed biosensor exhibits a S Vth value of 0.68 for positively charged biomolecules at a very low drain bias of 0.2 V. The proposed device can thus be used as an alternative to conventional FET-based biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA