Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 466(7305): 503-7, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20622853

RESUMO

X-linked mental retardation (XLMR) is a complex human disease that causes intellectual disability. Causal mutations have been found in approximately 90 X-linked genes; however, molecular and biological functions of many of these genetically defined XLMR genes remain unknown. PHF8 (PHD (plant homeo domain) finger protein 8) is a JmjC domain-containing protein and its mutations have been found in patients with XLMR and craniofacial deformities. Here we provide multiple lines of evidence establishing PHF8 as the first mono-methyl histone H4 lysine 20 (H4K20me1) demethylase, with additional activities towards histone H3K9me1 and me2. PHF8 is located around the transcription start sites (TSS) of approximately 7,000 RefSeq genes and in gene bodies and intergenic regions (non-TSS). PHF8 depletion resulted in upregulation of H4K20me1 and H3K9me1 at the TSS and H3K9me2 in the non-TSS sites, respectively, demonstrating differential substrate specificities at different target locations. PHF8 positively regulates gene expression, which is dependent on its H3K4me3-binding PHD and catalytic domains. Importantly, patient mutations significantly compromised PHF8 catalytic function. PHF8 regulates cell survival in the zebrafish brain and jaw development, thus providing a potentially relevant biological context for understanding the clinical symptoms associated with PHF8 patients. Lastly, genetic and molecular evidence supports a model whereby PHF8 regulates zebrafish neuronal cell survival and jaw development in part by directly regulating the expression of the homeodomain transcription factor MSX1/MSXB, which functions downstream of multiple signalling and developmental pathways. Our findings indicate that an imbalance of histone methylation dynamics has a critical role in XLMR.


Assuntos
Encéfalo/embriologia , Encéfalo/enzimologia , Cabeça/embriologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Biocatálise , Encéfalo/citologia , Domínio Catalítico , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , DNA Intergênico/genética , Regulação da Expressão Gênica , Histona Desmetilases/genética , Histonas/química , Proteínas de Homeodomínio/genética , Humanos , Arcada Osseodentária/citologia , Arcada Osseodentária/embriologia , Lisina/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/enzimologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Metilação , Neurônios/citologia , Neurônios/enzimologia , Regiões Promotoras Genéticas , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Genes Dev ; 18(1): 48-61, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14724178

RESUMO

Progesterone stimulation of Xenopus oocyte maturation requires the cytoplasmic polyadenylation-induced translation of mos and cyclin B mRNAs. One cis element that drives polyadenylation is the CPE, which is bound by the protein CPEB. Polyadenylation is stimulated by Aurora A (Eg2)-catalyzed CPEB serine 174 phosphorylation, which occurs soon after oocytes are exposed to progesterone. Here, we show that insulin also stimulates Aurora A-catalyzed CPEB S174 phosphorylation, cytoplasmic polyadenylation, translation, and oocyte maturation. However, these insulin-induced events are uniquely controlled by PI3 kinase and PKC-zeta, which act upstream of Aurora A. The intersection of the progesterone and insulin signaling pathways occurs at glycogen synthase kinase 3 (GSK-3), which regulates the activity of Aurora A. GSK-3 and Aurora A interact in vivo, and overexpressed GSK-3 inhibits Aurora A-catalyzed CPEB phosphorylation. In vitro, GSK-3 phosphorylates Aurora A on S290/291, the result of which is an autophosphorylation of serine 349. GSK-3 phosphorylated Aurora A, or Aurora A proteins with S290/291D or S349D mutations, have reduced or no capacity to phosphorylate CPEB. Conversely, Aurora A proteins with S290/291A or S349A mutations are constitutively active. These results suggest that the progesterone and insulin stimulate maturation by inhibiting GSK-3, which allows Aurora A activation and CPEB-mediated translation.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/farmacologia , Oócitos/fisiologia , Poli A/metabolismo , Progesterona/farmacologia , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinases , Proteínas de Ciclo Celular/metabolismo , Feminino , Gonadotropinas Equinas/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/citologia , Oócitos/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Xenopus laevis/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA
3.
Genes Dev ; 17(12): 1457-62, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12815066

RESUMO

CPEB is an mRNA-binding protein that stimulates polyadenylation-induced translation of maternal mRNA once it is phosphorylated on Ser 174 or Thr 171 (species-dependent). Disruption of the CPEB gene in mice causes an arrest of oogenesis at embryonic day 16.5 (E16.5), when most oocytes are in pachytene of prophase I. Here, we show that CPEB undergoes Thr 171 phosphorylation at E16.5, but dephosphorylation at the E18.5, when most oocytes are entering diplotene. Although phosphorylation is mediated by the kinase aurora, the dephosphorylation is due to the phosphatase PP1. The temporal control of CPEB phosphorylation suggests a mechanism in which CPE-containing mRNA translation is stimulated at pachytene and metaphase I.


Assuntos
Meiose/fisiologia , Ovário/embriologia , Ovário/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Especificidade de Anticorpos , Aurora Quinases , Feminino , Impressão Genômica , Camundongos , Camundongos Knockout , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Poliadenilação , Prófase/fisiologia , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Treonina/metabolismo , Xenopus
4.
EMBO J ; 21(9): 2139-48, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11980711

RESUMO

Activity-dependent local translation of dendritic mRNAs is one process that underlies synaptic plasticity. Here, we demonstrate that several of the factors known to control polyadenylation-induced translation in early vertebrate development [cytoplasmic polyadenylation element-binding protein (CPEB), maskin, poly(A) polymerase, cleavage and polyadenylation specificity factor (CPSF) and Aurora] also reside at synaptic sites of rat hippocampal neurons. The induction of polyadenylation at synapses is mediated by the N-methyl-D-aspartate (NMDA) receptor, which transduces a signal that results in the activation of Aurora kinase. This kinase in turn phosphorylates CPEB, an essential RNA-binding protein, on a critical residue that is necessary for polyadenylation-induced translation. These data demonstrate a remarkable conservation of the regulatory machinery that controls signal-induced mRNA translation, and elucidates an axis connecting the NMDA receptor to localized protein synthesis at synapses.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Ligação a RNA/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Xenopus , Fatores de Poliadenilação e Clivagem de mRNA , Sequência de Aminoácidos , Animais , Aurora Quinases , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Feminino , Hipocampo/fisiologia , Dados de Sequência Molecular , Oócitos/fisiologia , Fosforilação , Poliadenilação/fisiologia , RNA Mensageiro/metabolismo , Ratos , Xenopus/fisiologia
5.
Cell ; 109(4): 473-83, 2002 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-12086604

RESUMO

The synthesis and destruction of cyclin B drives mitosis in eukaryotic cells. Cell cycle progression is also regulated at the level of cyclin B translation. In cycling extracts from Xenopus embryos, progression into M phase requires the polyadenylation-induced translation of cyclin B1 mRNA. Polyadenylation is mediated by the phosphorylation of CPEB by Aurora, a kinase whose activity oscillates with the cell cycle. Exit from M phase seems to require deadenylation and subsequent translational silencing of cyclin B1 mRNA by Maskin, a CPEB and eIF4E binding factor, whose expression is cell cycle regulated. These observations suggest that regulated cyclin B1 mRNA translation is essential for the embryonic cell cycle. Mammalian cells also display a cell cycle-dependent cytoplasmic polyadenylation, suggesting that translational control by polyadenylation might be a general feature of mitosis in animal cells.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Oócitos/metabolismo , Biossíntese de Proteínas/genética , Proteínas de Xenopus , Fatores de Poliadenilação e Clivagem de mRNA , Animais , Aurora Quinases , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Citoplasma/genética , Citoplasma/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Mamíferos/embriologia , Mamíferos/metabolismo , Mitose/genética , Oócitos/citologia , Poliadenilação/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA