Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Physiol Rev ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324871

RESUMO

This review addresses oxidative stress and redox signaling in the pancreas under physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross-talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, acting PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-ß synthase causes blockade of the trans-sulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial ROS, which trigger acinar-to-ductal metaplasia and progression to PanIN. ROS are maintained at sufficient level to promote cell proliferation, whilst avoiding cell death or senescence through formation of NADPH and GSH, and activation of NRF-2, HIF-1/2α, and CREB. Redox signalling also plays a fundamental role in differentiation, proliferation, and insulin secretion of ß-cells. However, ROS overproduction promotes ß-cell dysfunction and apoptosis in type 1 and type 2 diabetes.

2.
EMBO J ; 43(13): 2789-2812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811853

RESUMO

It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteotoxic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knockout mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionarily conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice, and humans.


Assuntos
Caenorhabditis elegans , Cisteína , Cistina , Camundongos Knockout , Oxirredução , Proteoma , Tiorredoxinas , Animais , Humanos , Camundongos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cisteína/metabolismo , Cistina/metabolismo , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteoma/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética
3.
J Pathol ; 247(1): 48-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30221360

RESUMO

Obesity is associated with local and systemic complications in acute pancreatitis. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator and master regulator of mitochondrial biogenesis that exhibits dysregulation in obese subjects. Our aims were: (1) to study PGC-1α levels in pancreas from lean or obese rats and mice with acute pancreatitis; and (2) to determine the role of PGC-1α in the inflammatory response during acute pancreatitis elucidating the signaling pathways regulated by PGC-1α. Lean and obese Zucker rats and lean and obese C57BL6 mice were used first; subsequently, wild-type and PGC-1α knockout (KO) mice with cerulein-induced pancreatitis were used to assess the inflammatory response and expression of target genes. Ppargc1a mRNA and protein levels were markedly downregulated in pancreas of obese rats and mice versus lean animals. PGC-1α protein levels increased in pancreas of lean mice with acute pancreatitis, but not in obese mice with pancreatitis. Interleukin-6 (Il6) mRNA levels were dramatically upregulated in pancreas of PGC-1α KO mice after cerulein-induced pancreatitis in comparison with wild-type mice with pancreatitis. Edema and the inflammatory infiltrate were more intense in pancreas from PGC-1α KO mice than in wild-type mice. The lack of PGC-1α markedly enhanced nuclear translocation of phospho-p65 and recruitment of p65 to Il6 promoter. PGC-1α bound phospho-p65 in pancreas during pancreatitis in wild-type mice. Glutathione depletion in cerulein-induced pancreatitis was more severe in KO mice than in wild-type mice. PGC-1α KO mice with pancreatitis, but not wild-type mice, exhibited increased myeloperoxidase activity in the lungs, together with alveolar wall thickening and collapse, which were abrogated by blockade of the IL-6 receptor glycoprotein 130 with LMT-28. In conclusion, obese rodents exhibit PGC-1α deficiency in the pancreas. PGC-1α acts as selective repressor of nuclear factor-κB (NF-κB) towards IL-6 in pancreas. PGC-1α deficiency markedly enhanced NF-κB-mediated upregulation of Il6 in pancreas in pancreatitis, leading to a severe inflammatory response. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Interleucina-6/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Pancreatite/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Ceruletídeo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/genética , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fosforilação , Ratos Zucker , Transdução de Sinais , Ácido Taurocólico , Fator de Transcrição RelA/metabolismo , Regulação para Cima
4.
Int J Obes (Lond) ; 43(1): 158-168, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717278

RESUMO

BACKGROUND/OBJECTIVES: A high body mass index increases the risk of severe pancreatitis and associated mortality. Our aims were: (1) To determine whether obesity affects the release of extracellular nucleosomes in patients with pancreatitis; (2) To determine whether pancreatic ascites confers lipotoxicity and triggers the release of extracellular nucleosomes in lean and obese rats. METHODS: DNA and nucleosomes were determined in plasma from patients with mild or moderately severe acute pancreatitis either with normal or high body mass index (BMI). Lipids from pancreatic ascites from lean and obese rats were analyzed and the associated toxicity measured in vitro in RAW 264.7 macrophages. The inflammatory response, extracellular DNA and nucleosomes were determined in lean or obese rats with pancreatitis after peritoneal lavage. RESULTS: Nucleosome levels in plasma from obese patients with mild pancreatitis were higher than in normal BMI patients; these levels markedly increased in obese patients with moderately severe pancreatitis vs. those with normal BMI. Ascites from obese rats exhibited high levels of palmitic, oleic, stearic, and arachidonic acids. Necrosis and histone 4 citrullination-marker of extracellular traps-increased in macrophages incubated with ascites from obese rats but not with ascites from lean rats. Peritoneal lavage abrogated the increase in DNA and nucleosomes in plasma from lean or obese rats with pancreatitis. It prevented fat necrosis and induction of HIF-related genes in lung. CONCLUSIONS: Extracellular nucleosomes are intensely released in obese patients with acute pancreatitis. Pancreatitis-associated ascitic fluid triggers the release of extracellular nucleosomes in rats with severe pancreatitis.


Assuntos
Ascite/metabolismo , Nucleossomos/metabolismo , Obesidade/fisiopatologia , Pâncreas/patologia , Pancreatite/fisiopatologia , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Índice de Massa Corporal , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Pancreatite/metabolismo , Lavagem Peritoneal , Ratos , Ratos Zucker , Magreza
5.
J Immunol ; 197(10): 4137-4150, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798150

RESUMO

Chromatin remodeling seems to regulate the patterns of proinflammatory genes. Our aim was to provide new insights into the epigenetic mechanisms that control transcriptional activation of early- and late-response genes in initiation and development of severe acute pancreatitis as a model of acute inflammation. Chromatin changes were studied by chromatin immunoprecipitation analysis, nucleosome positioning, and determination of histone modifications in promoters of proinflammatory genes in vivo in the course of taurocholate-induced necrotizing pancreatitis in rats and in vitro in rat pancreatic AR42J acinar cells stimulated with taurocholate or TNF-α. Here we show that the upregulation of early and late inflammatory genes rely on histone acetylation associated with recruitment of histone acetyltransferase CBP. Chromatin remodeling of early genes during the inflammatory response in vivo is characterized by a rapid and transient increase in H3K14ac, H3K27ac, and H4K5ac as well as by recruitment of chromatin-remodeling complex containing BRG-1. Chromatin remodeling in late genes is characterized by a late and marked increase in histone methylation, particularly in H3K4. JNK and p38 MAPK drive the recruitment of transcription factors and the subsequent upregulation of early and late inflammatory genes, which is associated with nuclear translocation of the early gene Egr-1 In conclusion, specific and strictly ordered epigenetic markers such as histone acetylation and methylation, as well as recruitment of BRG-1-containing remodeling complex are associated with the upregulation of both early and late proinflammatory genes in acute pancreatitis. Our findings highlight the importance of epigenetic regulatory mechanisms in the control of the inflammatory cascade.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação da Expressão Gênica , Pancreatite Necrosante Aguda/genética , Pancreatite Necrosante Aguda/imunologia , Ativação Transcricional , Acetilação , Células Acinares/efeitos dos fármacos , Animais , Imunoprecipitação da Cromatina , DNA Helicases/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Inflamação/genética , Metilação , Proteínas Nucleares/genética , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Ratos , Ácido Taurocólico/farmacologia , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/farmacologia
6.
Am J Pathol ; 186(8): 2043-2054, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27461362

RESUMO

Acute pancreatitis (AP) is a common and devastating gastrointestinal disorder that causes significant morbidity. The disease starts as local inflammation in the pancreas that may progress to systemic inflammation and complications. Protein tyrosine phosphatase 1B (PTP1B) is implicated in inflammatory signaling, but its significance in AP remains unclear. To investigate whether PTP1B may have a role in AP, we used pancreas PTP1B knockout (panc-PTP1B KO) mice and determined the effects of pancreatic PTP1B deficiency on cerulein- and arginine-induced acute pancreatitis. We report that PTP1B protein expression was increased in the early phase of AP in mice and rats. In addition, histological analyses of pancreas samples revealed enhanced features of AP in cerulein-treated panc-PTP1B KO mice compared with controls. Moreover, cerulein- and arginine-induced serum amylase and lipase were significantly higher in panc-PTP1B KO mice compared with controls. Similarly, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1B, IL-6, and tumor necrosis factor-α were increased in panc-PTP1B KO mice compared with controls. Furthermore, panc-PTP1B KO mice exhibited enhanced cerulein- and arginine-induced NF-κB inflammatory response accompanied with increased mitogen-activated protein kinases activation and elevated endoplasmic reticulum stress. Notably, these effects were recapitulated in acinar cells treated with a pharmacological inhibitor of PTP1B. These findings reveal a novel role for pancreatic PTP1B in cerulein- and arginine-induced acute pancreatitis.


Assuntos
Pancreatite Necrosante Aguda/metabolismo , Pancreatite Necrosante Aguda/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36243628
8.
Crit Rev Clin Lab Sci ; 52(4): 159-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26104038

RESUMO

Dysregulation of the cell cycle leads to polyploid cells, which are classified into mononuclear or binuclear polyploid cells depending on the number of nuclei. Polyploidy is common in plants and in animals. Physiologically, polyploidy and binucleation are differentiation markers and also features of the aging process. In fact, although they provide multiple copies of genes required for survival, a negative correlation between growth capacity and polyploidy has been reported, and thus, suppression or reversal of this phenomenon may be a growth advantage. On the other hand, unscheduled polyploidization may cause genomic instability that might lead to neoplastic aneuploidy. The aim of this review is to analyze the mechanisms that lead to polyploidy, and particularly binucleation, and highlight the potential of ploidy as a marker of illness severity or the success of the adaptive response for an injury, with special emphasis in the liver under physiological and pathological conditions. Hepatocyte binucleation occurs in late fetal development and postnatal maturation, especially after weaning via phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt). It also increases upon aging of the liver as well as in liver cirrhosis and cancer. Liver binucleation mainly indicates the severity of the damage. Furthermore, the eventual increase in hepatocyte binucleation points out compensatory proliferation associated with liver injury. Ploidy conveyor would also permit hepatocyte adaptation to xenobiotic or nutritional injury. In contrast, polyploidy is a feature of many human cancers, and it may predispose to genomic instability and generation of aneuploidization that play a major role in carcinogenesis. Finally, a better understanding of the polyploidization process is needed in order to approach clinical research but also, to get deeper knowledge of cell cycle control. The fascinating regulation of cell cycle in liver and the generation and reversal of ploidies will provide more clues for the mystery of liver regeneration.


Assuntos
Citocinese , Animais , Ciclo Celular , Células Cultivadas , Hepatócitos , Humanos , Neoplasias Hepáticas , Regeneração Hepática , Camundongos , Camundongos Knockout
9.
Hepatology ; 57(5): 1950-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23354775

RESUMO

UNLABELLED: p38α mitogen-activated protein kinases (MAPK) may be essential in the up-regulation of proinflammatory cytokines and can be activated by transforming growth factor ß, tumor necrosis factor-α, interleukin-1ß, and oxidative stress. p38 MAPK activation results in hepatocyte growth arrest, whereas increased proliferation has been considered a hallmark of p38α-deficient cells. Our aim was to assess the role of p38α in the progression of biliary cirrhosis induced by chronic cholestasis as an experimental model of chronic inflammation associated with hepatocyte proliferation, apoptosis, oxidative stress, and fibrogenesis. Cholestasis was induced in wildtype and liver-specific p38α knockout mice by bile duct ligation and animals were sacrificed at 12 and 28 days. p38α knockout mice exhibited a 50% decrease in mean life-span after cholestasis induction. MK2 phosphorylation was markedly reduced in liver of p38α-deficient mice upon chronic cholestasis. Hepatocyte growth was reduced and hepatomegaly was absent in p38α-deficient mice during chronic cholestasis through down-regulation of both AKT and mammalian target of rapamycin. Cyclin D1 and cyclin B1 were up-regulated in liver of p38α-deficient mice upon chronic cholestasis, but unexpectedly proliferating cell nuclear antigen was down-regulated at 12 days after cholestasis induction and the mitotic index was very high upon cholestasis in p38α-deficient mice. p38α-knockout hepatocytes exhibited cytokinesis failure evidenced by an enhanced binucleation rate. As chronic cholestasis evolved the binucleation rate decreased in wildtype animals, whereas it remained high in p38α-deficient mice. CONCLUSION: Our results highlight a key role of p38α in hepatocyte proliferation, in the development of hepatomegaly, and in survival during chronic inflammation such as biliary cirrhosis.


Assuntos
Proliferação de Células , Citocinese , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Fígado/metabolismo , Fígado/patologia , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Animais , Apoptose/fisiologia , Doença Crônica , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Hepatócitos/metabolismo , Hepatócitos/patologia , Cirrose Hepática Biliar/mortalidade , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Taxa de Sobrevida
10.
Ann Surg Oncol ; 21(4): 1138-46, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24390708

RESUMO

PURPOSE: To identify quality indicators and establish acceptable quality limits (AQLs) in pancreatic oncologic surgery using a formal statistical methodology. METHODS: Indicators have been identified through systematic literature reviews and guidelines for pancreatic surgery. AQLs were determined for each indicator with confidence intervals of 99.8 and 95 % above and below the weighted average by sample size from the different series examined. RESULTS: Several indicators have been identified with the following results as AQLs: resectability rate >59 %; morbidity, mortality, and pancreatic fistula rate in pancreaticoduodenectomy <55, <5, and <16 %, respectively; morbidity, mortality, and fistula rate in distal pancreatectomy <53, <4, and <31 %, respectively; number of lymph nodes retrieved >15; R1 resection <46 %; survival at 1, 3, and 5 years >54, >19, and >8 %, respectively. CONCLUSIONS: A series of different indicators for quality surgical care outcome in pancreatic cancer, as well as their limits, have been determined according to a standard methodology.


Assuntos
Avaliação de Resultados em Cuidados de Saúde/normas , Pancreatectomia , Neoplasias Pancreáticas/cirurgia , Garantia da Qualidade dos Cuidados de Saúde/normas , Humanos , Prognóstico
11.
Cell Commun Signal ; 12: 13, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24606867

RESUMO

BACKGROUND: Acute pancreatitis (AP) is a common clinical problem whose incidence has been progressively increasing in recent years. Onset of the disease is trigged by intra-acinar cell activation of digestive enzyme zymogens that induce autodigestion, release of pro-inflammatory cytokines and acinar cell injury. T-cell protein tyrosine phosphatase (TCPTP) is implicated in inflammatory signaling but its significance in AP remains unclear. RESULTS: In this study we assessed the role of pancreatic TCPTP in cerulein-induced AP. TCPTP expression was increased at the protein and messenger RNA levels in the early phase of AP in mice and rats. To directly determine whether TCPTP may have a causal role in AP we generated mice with pancreatic TCPTP deletion (panc-TCPTP KO) by crossing TCPTP floxed mice with Pdx1-Cre transgenic mice. Amylase and lipase levels were lower in cerulein-treated panc-TCPTP KO mice compared with controls. In addition, pancreatic mRNA and serum concentrations of the inflammatory cytokines TNFα and IL-6 were lower in panc-TCPTP KO mice. At the molecular level, panc-TCPTP KO mice exhibited enhanced cerulein-induced STAT3 Tyr705 phosphorylation accompanied by a decreased cerulein-induced NF-κB inflammatory response, and decreased ER stress and cell death. CONCLUSION: These findings revealed a novel role for pancreatic TCPTP in the progression of cerulein-induced AP.


Assuntos
Pancreatite Necrosante Aguda/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Amilases/sangue , Animais , Ceruletídeo/toxicidade , Interleucina-6/sangue , Lipase/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Pancreatite Necrosante Aguda/induzido quimicamente , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/sangue
12.
Pediatr Res ; 76(2): 127-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24819373

RESUMO

BACKGROUND: Hypoxic-ischemic insults to the neonatal brain may cause neurodevelopmental disorders. Vulnerability of different areas of the neural tissue to hypoxic-ischemic stress might be explained by either heterogeneous sensitivity to oxygen or neuroprotective capability. Our understanding of regional heterogeneity is still incomplete in terms of metabolic reconfiguration and/or activation of neuroprotective mechanisms. METHODS: We studied, by western blotting, reverse-transcriptase PCR, and tandem mass spectrometry, the response of retina and choroid at protein, gene, and metabolic levels during hypoxia in a piglet model of acute postnatal hypoxia. RESULTS: We evidenced a metabolic shift towards glycolysis in choroid after hypoxia while retina experienced a dramatic energy stress with decreased mitochondrial metabolites. Hypoxia-inducible transcription factor-1α (HIF-1α) was not stabilized in retina during hypoxia, supported by a deficient signaling from v-akt murine thymoma viral oncogene (AKT) and ERK1/2, and unchanged glutathione redox status. In retina, but not in choroid, phosphorylation of p65 (NF-κB) and increased transcription of target genes may have a major role during hypoxic stress. CONCLUSION: We showed that the retina engages a distinct pattern of signaling and transcriptional events than observed in the choroid. Retina and choroid may reflect regional sensitivity to hypoxia. While prolonged and intense hypoxia may jeopardize retinal cell survival, choroid sets up a different pattern of response, which promotes adaptation to these adverse conditions.


Assuntos
Corioide/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Hipóxia/metabolismo , Retina/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Animais , Animais Recém-Nascidos , Western Blotting , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Espectrometria de Massas em Tandem
13.
Redox Biol ; 69: 102995, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142584

RESUMO

Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.


Assuntos
Isquemia Miocárdica , Ruído dos Transportes , Animais , Humanos , Ruído dos Transportes/efeitos adversos , Exposição Ambiental/efeitos adversos , Estudos de Coortes , Oxirredução
14.
Antioxid Redox Signal ; 39(10-12): 708-727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37450339

RESUMO

Significance: Redox signaling through mitochondrial reactive oxygen species (mtROS) has a key role in several mechanisms of regulated cell death (RCD), necroptosis, ferroptosis, pyroptosis, and apoptosis, thereby decisively contributing to inflammatory disorders. The role of mtROS in apoptosis has been extensively addressed, but their involvement in necrotic-like RCD has just started being elucidated, providing novel insights into the pathophysiology of acute inflammation. Recent Advances: p53 together with mtROS drive necroptosis in acute inflammation through downregulation of sulfiredoxin and peroxiredoxin 3. Mitochondrial hydroorotate dehydrogenase is a key redox system in the regulation of ferroptosis. In addition, a noncanonical pathway, which generates mtROS through the Ragulator-Rag complex and acts via mTORC1 to promote gasdermin D oligomerization, triggers pyroptosis. Critical Issues: mtROS trigger positive feedback loops leading to lytic RCD in conjunction with the necrosome, the inflammasome, glutathione depletion, and glutathione peroxidase 4 deficiency. Future Directions: The precise mechanism of membrane rupture in ferroptosis and the contribution of mtROS to ferroptosis in inflammatory disorders are still unclear, which will need further research. Mitochondrial antioxidants may provide promising therapeutic approaches toward acute inflammatory disorders. However, establishing doses and windows of action will be required to optimize their therapeutic potential, and to avoid potential adverse side effects linked to the blockade of beneficial mtROS adaptive signaling. Antioxid. Redox Signal. 39, 708-727.


Assuntos
Antioxidantes , Apoptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Piroptose , Inflamação/metabolismo
15.
Eur J Obstet Gynecol Reprod Biol ; 291: 168-177, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353086

RESUMO

OBJECTIVE: Between 20% and 30% of women who have undergone tubal ligation regret their decision. The alternative to regain fertility for these women is either in vitro fertilization or tubal re-anastomosis. This article presents a systematic review with meta-analysis to assess the current evidence on the efficacy of tubal recanalization surgery in patients who have previously undergone tubal ligation. STUDY DESIGN: The search was conducted in the World of Science (WOS) database, The Cochrane Library and ClinicalTrials.gov record using the keywords "tubal reversal", "tubal reanastomosis" and "tubal anastomosis". The review was carried out by two of the authors. Data from 22 studies were evaluated, comprising over 14,113 patients who underwent the studied surgery, following strict inclusion criteria: articles published between January 2012 and June 2022, in English and with a sample size bigger than 10 patients were included. A random-effects meta-analysis was performed. RESULTS: The overall pregnancy rate after anastomosis was found to be 65.3 % (95 % CI: 61.0-69.6). The percentage of women who had at least one live birth, known as the birth rate, was 42.6 % (95 % CI: 34.9-51.4). Adverse outcomes after surgery were also examined: the observed abortion rate among women who underwent surgery was 9.4 % (95 % CI: 7.0-11.7), and the overall ectopic pregnancy rate was 6.8 % (95 % CI: 4.6-9.0). No differences were found between the outcomes when differentiating surgical approaches: laparotomy, laparoscopy, or robotic-assisted surgery. The patient's age was identified as the most significant determining factor for fertility restoration. Finally, when comparing the results of tubal reversal with in vitro fertilization, reversal procedures appear more favorable for patients over 35 years old, while the results are similar for patients under 35 years old, but more data is needed to evaluate this finding. CONCLUSION: Therefore, the available literature review demonstrates that surgical anastomosis following tubal ligation is a reproducible technique with relevant success rates, performed by multiple expert groups worldwide.


Assuntos
Anastomose Cirúrgica , Tubas Uterinas , Microcirurgia , Esterilização Tubária , Humanos , Feminino , Anastomose Cirúrgica/métodos , Esterilização Tubária/métodos , Tubas Uterinas/cirurgia , Gravidez , Microcirurgia/métodos , Reversão da Esterilização/métodos , Taxa de Gravidez
16.
Artigo em Inglês | MEDLINE | ID: mdl-36332700

RESUMO

BACKGROUND: Although there is scientific evidence of the presence of immunometabolic alterations in major depression, not all patients present them. Recent studies point to the association between an inflammatory phenotype and certain clinical symptoms in patients with depression. The objective of our study was to classify major depression disorder patients using supervised learning algorithms or machine learning, based on immunometabolic and oxidative stress biomarkers and lifestyle habits. METHODS: Taking into account a series of inflammatory and oxidative stress biomarkers (C-reactive protein (CRP), tumor necrosis factor (TNF), 4-hydroxynonenal (HNE) and glutathione), metabolic risk markers (blood pressure, waist circumference and glucose, triglyceride and cholesterol levels) and lifestyle habits of the participants (physical activity, smoking and alcohol consumption), a study was carried out using machine learning in a sample of 171 participants, 91 patients with depression (71.42% women, mean age = 50.64) and 80 healthy subjects (67.50% women, mean age = 49.12). The algorithm used was the support vector machine, performing cross validation, by which the subdivision of the sample in training (70%) and test (30%) was carried out in order to estimate the precision of the model. The prediction of belonging to the patient group (MDD patients versus control subjects), melancholic type (melancholic versus non-melancholic patients) or resistant depression group (treatment-resistant versus non-treatment-resistant) was based on the importance of each of the immunometabolic and lifestyle variables. RESULTS: With the application of the algorithm, controls versus patients, such as patients with melancholic symptoms versus non-melancholic symptoms, and resistant versus non-resistant symptoms in the test phase were optimally classified. The variables that showed greater importance, according to the results of the area under the ROC curve, for the discrimination between healthy subjects and patients with depression were current alcohol consumption (AUC = 0.62), TNF-α levels (AUC = 0.61), glutathione redox status (AUC = 0.60) and the performance of both moderate (AUC = 0.59) and vigorous physical exercise (AUC = 0.58). On the other hand, the most important variables for classifying melancholic patients in relation to lifestyle habits were past (AUC = 0.65) and current (AUC = 0.60) tobacco habit, as well as walking routinely (AUC = 0.59) and in relation to immunometabolic markers were the levels of CRP (AUC = 0.62) and glucose (AUC = 0.58). In the analysis of the importance of the variables for the classification of treatment-resistant patients versus non-resistant patients, the systolic blood pressure (SBP) variable was shown to be the most relevant (AUC = 0.67). Other immunometabolic variables were also among the most important such as TNF-α (AUC = 0.65) and waist circumference (AUC = 0.64). In this case, sex (AUC = 0.59) was also relevant along with alcohol (AUC = 0.58) and tobacco (AUC = 0.56) consumption. CONCLUSIONS: The results obtained in our study show that it is possible to predict the diagnosis of depression and its clinical typology from immunometabolic markers and lifestyle habits, using machine learning techniques. The use of this type of methodology could facilitate the identification of patients at risk of presenting depression and could be very useful for managing clinical heterogeneity.


Assuntos
Transtorno Depressivo Maior , Fator de Necrose Tumoral alfa , Aprendizado de Máquina , Biomarcadores , Proteína C-Reativa , Nicotiana , Glutationa
17.
Redox Biol ; 56: 102423, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029648

RESUMO

Mitochondrial dysfunction is a key contributor to necroptosis. We have investigated the contribution of p53, sulfiredoxin, and mitochondrial peroxiredoxin 3 to necroptosis in acute pancreatitis. Late during the course of pancreatitis, p53 was localized in mitochondria of pancreatic cells undergoing necroptosis. In mice lacking p53, necroptosis was absent, and levels of PGC-1α, peroxiredoxin 3 and sulfiredoxin were upregulated. During the early stage of pancreatitis, prior to necroptosis, sulfiredoxin was upregulated and localized into mitochondria. In mice lacking sulfiredoxin with pancreatitis, peroxiredoxin 3 was hyperoxidized, p53 localized in mitochondria, and necroptosis occurred faster; which was prevented by Mito-TEMPO. In obese mice, necroptosis occurred in pancreas and adipose tissue. The lack of p53 up-regulated sulfiredoxin and abrogated necroptosis in pancreas and adipose tissue from obese mice. We describe here a positive feedback between mitochondrial H2O2 and p53 that downregulates sulfiredoxin and peroxiredoxin 3 leading to necroptosis in inflammation and obesity.


Assuntos
Pancreatite , Peroxirredoxina III , Doença Aguda , Animais , Regulação para Baixo , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Obesos , Necroptose , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Proteína Supressora de Tumor p53/genética
18.
Am J Physiol Gastrointest Liver Physiol ; 301(1): G119-27, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21415417

RESUMO

Chronic cholestasis is characterized by mitochondrial dysfunction, associated with loss of mitochondrial membrane potential, decreased activities of respiratory chain complexes, and ATP production. Our aim was to determine the molecular mechanisms that link long-term cholestasis to mitochondrial dysfunction. We studied a model of chronic cholestasis induced by bile duct ligation in rats. Key sensors and regulators of the energetic state and mitochondrial biogenesis, mitochondrial DNA (mtDNA)-to-nuclear DNA (nDNA) ratio (mtDNA/nDNA) relative copy number, mtDNA deletions, and indexes of apoptosis (BAX, BCL-2, and cleaved caspase 3) and cell proliferation (PCNA) were evaluated. Our results show that long-term cholestasis is associated with absence of activation of key sensors of the energetic state, evidenced by decreased SIRT1 and pyruvate dehydrogenase kinase levels and lack of AMPK activation. Key mitochondrial biogenesis regulators (PGC-1α and GABP-α) decreased and NRF-1 was not transcriptionally active. Mitochondrial transcription factor A (TFAM) protein levels increased transiently in liver mitochondria at 2 wk after bile duct ligation, but they dramatically decreased at 4 wk. Reduced TFAM levels at this stage were mirrored by a marked decrease (65%) in mtDNA/nDNA relative copy number. The blockade of mitochondrial biogenesis should not be ascribed to activation of apoptosis or inhibition of cell proliferation. Impaired mitochondrial turnover and loss of the DNA stabilizing effect of TFAM are likely the causative event involved in the genetic instability evidenced by accumulation of mtDNA deletions. In conclusion, the lack of stimulation of mitochondrial biogenesis leads to mtDNA severe depletion and deletions in long-term cholestasis. Hence, long-term cholestasis should be considered a secondary mitochondrial hepatopathy.


Assuntos
DNA Mitocondrial/metabolismo , Deleção de Genes , Genes Mitocondriais , Cirrose Hepática Biliar/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Ductos Biliares/metabolismo , Caspase 3/metabolismo , Colestase/genética , Colestase/metabolismo , Doença Crônica , DNA Mitocondrial/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Masculino , Mitocôndrias Hepáticas/genética , Fator 1 Relacionado a NF-E2/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
Hist Sci ; 59(2): 155-178, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882430

RESUMO

This article analyzes the changing politics of hands-on display at the New York Museum of Science and Industry by following its urban deambulation within Midtown Manhattan, which went hand in hand with sharp shifts in promoters, narrative, and exhibition techniques. The museum was inaugurated in 1927 as the Museum of the Peaceful Arts on the 7th and 8th floors of the Scientific American Building. It changed its name in 1930 to the New York Museum of Science and Industry while on the 4th floor of the Daily News Building, and it was close to being renamed the Science Center when it finally moved in 1936 to the ground floor of the Rockefeller Center. The analysis of how the political agenda of the different promoters of the New York Museum of Science and Industry was spatially and performatively inscribed in each of its sites suggests that the 1930s boom of visitor-operated exhibits had nothing to do with an Exploratorium-like rhetoric of democratic empowerment. The social paternalistic ideology of the vocational education movement, the ideas on innovation of the early sociology of invention, and the corporate behavioral approach to mass communications are more suitable contexts in which to understand the changing politics of hands-on display in interwar American museums of science and industry.

20.
Antioxid Redox Signal ; 33(3): 145-165, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31856585

RESUMO

Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.


Assuntos
Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Doença Aguda , Biomarcadores , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/etiologia , Inflamação/patologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA