Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 283: 116839, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116692

RESUMO

In recirculating aquaculture systems (RAS), maintaining water quality in aquaculture tanks is a paramount factor for effective fish production. A down-flow hanging sponge (DHS) reactor, a trickling filter system used for water treatment of RAS that employs sponges to retain biomass, has high nitrification activity. However, nitrification in seawater RAS requires a long start-up time owing to the high salinity stress. Therefore, this study aimed to evaluate the nitrification characteristics and changes in the microbial community during the conversion of freshwater to seawater in a DHSreactor fed with ammonia-based artificial seawater. The total ammonia nitrogen concentration reached 1.0 mg-N·L-1 (initial concentration 10 mg-N·L-1) within 11 days of operation, and nitrate production was observed. The 16 S rRNA gene sequence of the DHS-retained sludge indicated that the detection rate of the ammonia-oxidizing archaeon Candidatus Nitrosocosmicus decreased from 23.9 % to 14.0 % and 25.8-17.6 % in the upper and lower parts of the DHS reactor, respectively, after the introduction of seawater. In contrast, the nitrite-oxidizing bacteria Nitrospira spp. increased from 0.1 % to 9.5 % and from 0.5 % to 10.5 %, respectively. The ammonia oxidation rates of 0.12 ± 0.064 and 0.051 ± 0.0043 mg-N·g-MLVSS-1·h-1 on the 37th day in the upper and bottom layers, respectively. Thus, nitrification in the DHS reactor performed well, even under high-salinity conditions with short operational days. This finding makes the transition from freshwater to saltwater fish in the RAS system simple and economical, and has the potential for early start-up of the RAS.


Assuntos
Aquicultura , Reatores Biológicos , Água Doce , Nitrificação , Água do Mar , Água do Mar/microbiologia , Reatores Biológicos/microbiologia , Água Doce/microbiologia , Microbiota , Amônia/metabolismo , Animais , RNA Ribossômico 16S/genética , Poríferos/microbiologia , Purificação da Água/métodos , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
2.
Microbiol Spectr ; : e0096524, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329828

RESUMO

Despite their immense economic value as a key aquaculture species, the production of Pacific white shrimp (Litopenaeus vannamei) faces significant challenges from intensive farming practices and disease outbreaks. Routine microbial profiling for disease surveillance could be a promising approach to anticipate and control disease outbreaks. To achieve this, accuracy in microbial profiling in shrimp ponds is crucial for enabling targeted action and prevention. Extensive documentation emphasizes that, beyond biological factors (related to the host, diet, or health status during the rearing period), technical elements, including sequencing techniques significantly influence bacterial community profiling. This study investigated the influence of short- and long-read sequencing of 16S rRNA genes on the microbial profiles in shrimp intestines, water, and sediments. The origin of the samples (intestine or environmental) in shrimp culture ponds primarily drove the observed differences in core microbial species. The ecological niches accounted for 56% of bacterial community variations in culture ponds. Both sequencing approaches showed consistent results in identifying higher-rank taxa and assessing alpha and beta diversity. However, at the species level, full-length 16S rRNA gene sequences provided better resolution than V3-V4 sequences. For routine microbial profiling in shrimp culture ponds, our study suggests that short-read sequences were sufficient for determining overall bacterial community.IMPORTANCEThis interdisciplinary study investigated the influence of sequencing techniques on bacterial communities profiling within Pacific white shrimp (Litopenaeus vannamei) ponds. By integrating aquaculture, microbiology, and environmental science, we revealed the role of ecological niches and factors like salinity and pH on microbiota diversity and composition in shrimp intestines, pond water, and sediment. Additionally, we compared the taxonomic resolution using partial versus full-length 16S rRNA gene sequences, highlighting the value of longer amplicons for precise identification of key taxa. These findings provide novel insights into microbial dynamics underlying environmental effects in shrimp aquaculture. Comprehensive characterization of the pond microbiome could lead to management strategies that promote shrimp health and productivity. Furthermore, the potential of a multi-omics approach for integrating complementary data streams to elucidate environment-microbiome-host interactions was highlighted.

3.
Bioresour Technol ; 413: 131496, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299346

RESUMO

This study presents a novel approach to sustainable aquaculture by integrating biofloc technology (BFT) with a compact down-flow hanging sponge (DHS) reactor. The integrated BFT-DHS system effectively removed nitrogen compounds while maintaining ammonia-nitrogen (NH4+-N) concentrations below 1 mg-N L-1 without water exchange. Application of this system in a tank bred with juvenile Oreochromis niloticus showed a high NH4+-N removal rate of up to 97 % and nitrite (NO2- -N) concentrations were maintained at 0.1 ± 0.1 mg-N L-1. Microbial analysis revealed Gordonia as the predominant genus in the biofloc contributing to heterotrophic nitrification, while the Peptostreptococcaceae family dominated the DHS reactor. Heterotrophic nitrification seemed to be the primary process for enhanced nitrogen removal. Pathogenic bacteria, Vibrio sp. was absent throughout the study. This study highlights the potential integration of BFT and DHS system for sustainable aquaculture practice with effective nitrogen removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA