Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(13): e2308084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243883

RESUMO

Ammonia is an essential commodity in the food and chemical industry. Despite the energy-intensive nature, the Haber-Bosch process is the only player in ammonia production at large scales. Developing other strategies is highly desirable, as sustainable and decentralized ammonia production is crucial. Electrochemical ammonia production by directly reducing nitrogen and nitrogen-based moieties powered by renewable energy sources holds great potential. However, low ammonia production and selectivity rates hamper its utilization as a large-scale ammonia production process. Creating effective and selective catalysts for the electrochemical generation of ammonia is critical for long-term nitrogen fixation. Single-atom alloys (SAAs) have become a new class of materials with distinctive features that may be able to solve some of the problems with conventional heterogeneous catalysts. The design and optimization of SAAs for electrochemical ammonia generation have recently been significantly advanced. This comprehensive review discusses these advancements from theoretical and experimental research perspectives, offering a fundamental understanding of the development of SAAs for ammonia production.

2.
Small ; : e2303269, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386787

RESUMO

In this work, the synthesis of core-shell ordered mesoporous silica nanoparticles (CSMS) with tunable particle size and shape through a dual surfactant-assisted approach is demonstrated. By varying the synthesis conditions, including the type of the solvent and the concentration of the surfactant, monodispersed and ordered mesoporous silica nanoparticles with tunable particle size (140-600 nm) and morphologies (hexagonal prism (HP), oblong, spherical, and hollow-core) can be realized. Comparative studies of the Cabazitaxel (CBZ)-loaded HP and spherical-shaped CSMS are conducted to evaluate their drug delivery efficiency to PC3 (prostate cancer) cell lines. These nanoparticles showed good biocompatibility and displayed a faster drug release at acidic pH than at basic pH. The cellular uptake of CSMS measured using confocal microscopy, flow cytometry, microplate reader, and ICP-MS (inductively coupled plasma mass spectrometry) techniques in PC3 cell lines revealed a better uptake of CSMS with HP morphology than its spherical counterparts. Cytotoxicity study showed that the anticancer activity of CBZ is improved with a higher free radical production when loaded onto CSMS. These unique materials with tunable morphology can serve as an excellent drug delivery system and will have potential applications for treating various cancers.

3.
Small ; 19(41): e2302875, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309270

RESUMO

Due to the depletion of fossil fuels and their-related environmental issues, sustainable, clean, and renewable energy is urgently needed to replace fossil fuel as the primary energy resource. Hydrogen is considered as one of the cleanest energies. Among the approaches to hydrogen production, photocatalysis is the most sustainable and renewable solar energy technique. Considering the low cost of fabrication, earth abundance, appropriate bandgap, and high performance, carbon nitride has attracted extensive attention as the catalyst for photocatalytic hydrogen production in the last two decades. In this review, the carbon nitride-based photocatalytic hydrogen production system, including the catalytic mechanism and the strategies for improving the photocatalytic performance is discussed. According to the photocatalytic processes, the strengthened mechanism of carbon nitride-based catalysts is particularly described in terms of boosting the excitation of electrons and holes, suppressing carriers recombination, and enhancing the utilization efficiency of photon-excited electron-hole. Finally, the current trends related to the screening design of superior photocatalytic hydrogen production systems are outlined, and the development direction of carbon nitride for hydrogen production is clarified.

4.
Small ; : e2304369, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715070

RESUMO

High-magnetization materials play crucial roles in various applications. However, the past few decades have witnessed a stagnation in the discovery of new materials with high magnetization. In this work, Ni/NiO nanocomposites are fabricated by depositing Ni and NiO thin layers alternately, followed by annealing at specific temperatures. Both the as-deposited samples and those annealed at 373 K exhibit low magnetization. However, the samples annealed at 473 K exhibit a significantly enhanced saturation magnetization exceeding 607 emu cm-3 at room temperature, surpassing that of pure Ni (480 emu cm-3 ). Material characterizations indicate that the composite comprises NiO nanoclusters of size 1-2 nm embedded in the Ni matrix. This nanoclustered NiO is primarily responsible for the high magnetization, as confirmed by density functional theory calculations. The calculations also indicate that the NiO clusters are ferromagnetically coupled with Ni, resulting in enhanced magnetization. This work demonstrates a new route toward developing artificial high-magnetization materials using the high magnetic moments of nanoclustered antiferromagnetic materials.

5.
Small ; 18(11): e2104855, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34874618

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively investigated during the last couple of decades because of their potential applications across various disciplines ranging from spintronics to nanotheranostics. However, pure iron oxide nanoparticles cannot meet the requirement for practical applications. Doping is considered as one of the most prominent and simplest techniques to achieve optimized multifunctional properties in nanomaterials. Doped iron oxides, particularly, rare-earth (RE) doped nanostructures have shown much-improved performance for a wide range of biomedical applications, including magnetic hyperthermia and magnetic resonance imaging (MRI), compared to pure iron oxide. Extensive investigations have revealed that bigger-sized RE ions possessing high magnetic moment and strong spin-orbit coupling can serve as promising dopants to significantly regulate the properties of iron oxides for advanced biomedical applications. This review provides a detailed investigation on the role of RE ions as primary dopants for engineering the structural and magnetic properties of Fe3 O4 nanoparticles to carefully introspect and correlate their impact on cancer theranostics with a special focus on magnetic hyperthermia and MRI. In addition, prospects for achieving high-performance magnetic hyperthermia and MRI are thoroughly discussed. Finally, suggestions on future work in these two areas are also proposed.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Compostos Férricos , Humanos , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Medicina de Precisão
6.
Angew Chem Int Ed Engl ; 60(39): 21242-21249, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34378296

RESUMO

Mesoporous carbon nitrides with C3 N5 and C3 N6 stoichiometries created a new momentum in the field of organic metal-free semiconductors owing to their unique band structures and high basicity. Here, we report on the preparation of a novel graphitic microporous carbon nitride with a tetrazine based chemical structure and the composition of C3 N5.4 using ultra-stable Y zeolite as the template and aminoguanidine hydrochloride, a high nitrogen-containing molecule, as the CN precursor. Spectroscopic characterization and density functional theory calculations reveal that the prepared material exhibits a new molecular structure, which comprises two tetrazines and one triazine rings in the unit cell and is thermodynamically stable. The resultant carbon nitride shows an outstanding surface area of 130.4 m2 g-1 and demonstrates excellent CO2 adsorption per unit surface area of 47.54 µmol m-2 , which is due to the existence of abundant free NH2 groups, basic sites and microporosity. The material also exhibits highly selective sensing over water molecules (151.1 mmol g-1 ) and aliphatic hydrocarbons due to its unique microporous structure with a high amount of hydrophilic nitrogen moieties and recognizing ability towards small molecules.

7.
Small ; 16(12): e1903937, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31647612

RESUMO

Developing a highly active, stable, and efficient non-noble metal-free functional electrocatalyst to supplant the benchmark Pt/C-based catalysts in practical fuel cell applications remains a stupendous challenge. A rational strategy is developed to directly anchor highly active and dispersed copper (Cu) nanospecies on mesoporous fullerenes (referred to as Cu-MFC60 ) toward enhancing oxygen reduction reaction (ORR) electrocatalysis. The preparation of Cu-MFC60 involves i) the synthesis of ordered MFC60 via the prevalent nanohard templating technique and ii) the postfunctionalization of MFC60 with finely distributed Cu nanospecies through incipient wet impregnation. The concurrence of Cu and cuprous oxide nanoparticles in the as-developed Cu-MFC60 samples through relevant material characterizations is affirmed. The optimized ORR catalyst, Cu(15%)-MFC60 , exhibits superior electrocatalytic ORR characteristics with an onset potential of 0.860 vs reversible hydrogen electrode, diffusion-limiting current density (-5.183 mA cm-2 ), improved stability, and tolerance to methanol crossover along with a high selectivity (four-electron transfer). This enhanced ORR performance can be attributed to the rapid mass transfer and abundant active sites owing to the synergistic coupling effects arising from the mixed copper nanospecies and the fullerene framework.

8.
Adv Sci (Weinh) ; 11(35): e2406235, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031008

RESUMO

Hybrid ion capacitors (HICs) have aroused extreme interest due to their combined characteristics of energy and power densities. The performance of HICs lies hidden in the electrode materials used for the construction of battery and supercapacitor components. The hunt is always on to locate the best material in terms of cost-effectiveness and overall optimized performance characteristics. Functionalized biomass-derived porous carbons (FBPCs) possess exquisite features including easy synthesis, wide availability, high surface area, large pore volume, tunable pore size, surface functional groups, a wide range of morphologies, and high thermal and chemical stability. FBPCs have found immense use as cathode, anode and dual electrode materials for HICs in the recent literature. The current review is designed around two main concepts which include the synthesis and properties of FBPCs followed by their utilization in various types of HICs. Among monovalent HICs, lithium, sodium, and potassium, are given comprehensive attention, whereas zinc is the only multivalent HIC that is focused upon due to corresponding literature availability. Special attention is also provided to the critical factors that govern the performance of HICs. The review concludes by providing feasible directions for future research in various aspects of FBPCs and their utilization in HICs.

9.
Nanoscale ; 16(35): 16439-16450, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39115411

RESUMO

The electrocatalytic activity of carbon materials is highly dependent on the controlled modulation of their composition and porosity. Herein, mesoporous N-doped carbon with different amounts of nitrogen was synthesized through a unique strategy of using a high nitrogen containing CN precursor, 3-amino 1,2,4 triazine (3-ATZ) which is generally used for the preparation of carbon nitrides, integrated with the combination of a templating method and high temperature treatment. The nitrogen content and the graphitisation of the prepared materials were finely tuned with the simple adjustment of the carbonisation temperature (800-1100 °C). The optimised sample as an electrocatalyst for oxygen reduction reaction (ORR) exhibited an onset potential of 0.87 V vs. RHE with a current density of 5.1 mA cm-2 and a high kinetic current density (Jk) of 33.1 mA cm-2 at 0.55 V vs. RHE. The characterisation results of the prepared materials indicated that pyridinic and graphitic nitrogen in the carbon framework promoted ORR activity with improved four-electron selectivity and excellent methanol tolerance and stability. DFT calculations demonstrated that the structural and planar defects in the N-doped carbon regulated the surface electronic properties of the electrocatalyst, leading to a reduction in the energy barrier for the ORR activity. This strategy has the potential to unlock a platform for designing a series of catalysts for electrochemical applications.

10.
Environ Pollut ; 334: 122159, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442330

RESUMO

The prevalence and adverse impacts of microplastics requires the identification of science-based abatement measures. Electrocoagulation treatment is a cost-effective oxidation process that removes numerous pollutants, including to some extent, microplastics. The performance of a custom-built electrocoagulation reactor was determined by calculating the removal efficiency. The effects of the oxidation process on polymer types (polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET) and polypropylene (PP)) and shapes (fibres and fragments) were investigated in synthetic wastewater and laundry wastewater. The calculated removal efficiency suggested that electrocoagulation treatment was an effective technology for microplastics abatement. More fibres tended to be removed than fragments, viz. 92% fibres removed versus 88% fragments. The findings also demonstrated that specific polymers were preferentially removed, viz. PET > LDPE > PP > PA. Further analysis indicated that the electrocoagulation treatment affected microplastic polymers physically, viz. flaking and changed surface conditions, as well as chemically, viz. changes in vibrational energies of C-O-C stretching bonds, C=O stretching bonds, C-H stretching bonds and formation of reactive oxygen species (ROS). Our findings indicate that whilst seemingly effective, electrocoagulation treatment induces changes to microplastic polymers that could beneficially lead to degradation, and/or further fragmentation or breakdown and thereby potentially generating more bioavailable toxic nanoplastic byproducts.


Assuntos
Microplásticos , Poluentes Químicos da Água , Polímeros , Plásticos , Águas Residuárias , Poluentes Químicos da Água/análise , Polipropilenos , Nylons , Polietileno , Polietilenotereftalatos , Eletrocoagulação , Monitoramento Ambiental
11.
Artigo em Inglês | MEDLINE | ID: mdl-37643902

RESUMO

The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.

12.
Nanoscale ; 14(18): 6830-6845, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35441642

RESUMO

Mesoporous silica-based nanoparticles (MSNs) have gained rapid interest as a drug delivery system (DDS) and demonstrated their versatility in delivering drugs for the treatment of various cancers. However, the drug loading efficiency of MSNs is low and is usually improved by improving textural properties through complicated synthesis methods or by post synthesis modification of the surface that can result in the loss of surface area and modify its drug release properties. In this study, we report a direct single-step synthesis of MSNs with a unique egg-yolk core-shell morphology, large pore volume and a hydrophilic surface, decorated with nitrogen rich surface functionalities for increasing its drug loading capacity. This combination of excellent textural properties and surface functionalisation was achieved by a simple soft templating method using dual surfactants and the silica sources assisted by employing either triethylamine (TEA) or triethanolamine (TEO) as the hydrolysis agent. The morphology and well-ordered mesoporous structure can simply be tuned by changing the pH of the synthesis medium that affects the self-assembly mechanism of the micelles. HRTEM image of samples clearly revealed an egg-yolk core-shell morphology with a thin mesoporous silica shell. The optimised MSN samples synthesized at a pH of 11 using either TEA or TEO depicted a higher doxorubicin (Dox) loading capacity of 425 µg mg-1 and 481 µg mg-1 respectively, as compared to only 347 µg mg-1 for MSN samples due to the uniform distribution of nitrogen functionalities. The anticancer activity of Dox loaded MSNs evaluated in two different prostate cancer cell lines (PC-3 and LNCaP) showed a higher cytotoxicity of the drug loaded on optimised MSN samples as compared to pristine MSNs without affecting the cellular uptake of the particles. These results suggest that the unique single-step synthesis and functionalisation method resulted in successfully achieving higher drug loading in egg-yolk core-shell nitrogen functionalised MSNs and could be implemented as an effective carrier of chemotherapeutic drugs.


Assuntos
Nanopartículas , Neoplasias da Próstata , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Masculino , Nanopartículas/química , Nitrogênio , Porosidade , Neoplasias da Próstata/tratamento farmacológico , Dióxido de Silício/química
13.
Adv Sci (Weinh) ; 9(16): e2105603, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35384377

RESUMO

Porous boron carbon nitride (BCN) is one of the exciting systems with unique electrochemical and adsorption properties. However, the synthesis of low-cost and porous BCN with tunable porosity is challenging, limiting its full potential in a variety of applications. Herein, the preparation of well-defined mesoporous boron carbon nitride (MBCN) with high specific surface area, tunable pores, and nitrogen contents is demonstrated through a simple integration of chemical polymerization of readily available sucrose and borane ammonia complex (BAC) through the nano-hard-templating approach. The bimodal pores are introduced in MBCN by controlling the self-organization of BAC and sucrose molecules within the nanochannels of the template. It is found that the optimized sample shows a high specific capacitance (296 F g-1 at 0.5 A g-1 ), large specific capacity for sodium-ion battery (349 mAg h-1 at 50 mAh g-1 ), and excellent CO2 adsorption capacity (27.14 mmol g-1 at 30 bar). Density functional theory calculations demonstrate that different adsorption sites (BC, BN, CN, and CC) and the large specific surface area strongly support the high adsorption capacity. This finding offers an innovative breakthrough in the design and development of MBCN nanostructures for energy storage and carbon capture applications.

14.
Chem Asian J ; 16(23): 3999-4005, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653318

RESUMO

We investigated the CO2 adsorption and electrochemical conversion behavior of triazole-based C3 N5 nanorods as a single matrix for consecutive CO2 capture and conversion. The pore size, basicity, and binding energy were tailored to identify critical factors for consecutive CO2 capture and conversion over carbon nitrides. Temperature-programmed desorption (TPD) analysis of CO2 demonstrates that triazole-based C3 N5 shows higher basicity and stronger CO2 binding energy than g-C3 N4 . Triazole-based C3 N5 nanorods with 6.1 nm mesopore channels exhibit better CO2 adsorption than nanorods with 3.5 and 5.4 nm mesopore channels. C3 N5 nanorods with wider mesopore channels are effective in increasing the current density as an electrocatalyst during the CO2 reduction reaction. Triazole-based C3 N5 nanorods with tailored pore sizes exhibit CO2 adsorption abilities of 5.6-9.1 mmol/g at 0 °C and 30 bar. Their Faraday efficiencies for reducing CO2 to CO are 14-38% at a potential of -0.8 V vs. RHE.

15.
J Nanosci Nanotechnol ; 20(12): 7347-7355, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711600

RESUMO

We report on the coating of chitosan/lovastatin particles with a liquid solution of alginate using a 3D printing technique. The prepared particles are characterized by Scanning Electronic Microscopy, Infrared Spectroscopy, Dynamic Light Scattering, Differential Scanning Calorimetry, and Ultraviolet-Visible Spectroscopy. Characterization results reveal that the coating of alginate makes a considerable difference in the structure, morphology, size distribution and zeta potential of the chitosan/lovastatin particles, and the size of the coated particles is increased after the coating. We also demonstrate the drug release ability of the chitosan/lovastatin particles in simulated gastric fluid and controlled in simulated intestinal fluid. Drug release study reveals that the drug release profile of the coated particles varies significantly with the pH of the solution and the coating process significantly reduces the rate of release of the drug. We also report that the bioavailability of lovastatin particles can be improved by coating with the biopolymer layers.


Assuntos
Alginatos , Quitosana , Preparações de Ação Retardada , Portadores de Fármacos , Liberação Controlada de Fármacos , Ácidos Hexurônicos , Lovastatina , Tamanho da Partícula
16.
J Nanosci Nanotechnol ; 20(6): 3519-3526, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31748046

RESUMO

Magnetite (Fe³O4) and Cobalt-doped Fe³O4 nanoparticles were obtained by hydrothermal reaction. The synthesized products were characterized by X-ray diffraction, Energy dispersive spectroscopy, Scanning electron microscopy, and Zeta potential. The results show that Co was substituted in the Fe³O4 crystal structure as CoFe2O4 phase. The synthesized materials are nanometer in size having uniform morphology, negatively charged and cobalt concentration varied from 2.5 to 7.5 wt.%. The magnetite and Co-doped magnetite nanoparticles at a low concentration (3 wt.%) were dispersed in the epoxy resin. The effect of the magnetite and Co-doped magnetite nanoparticles on the anticorrosion performance of the protective epoxy coatings covered on carbon steel surface was characterized by Electrochemical Impedance Spectroscopy (EIS) and salt fog exposure. Codoped magnetite nanoparticles at 2.5 wt.% provided high protection of the coatings. In addition, Pull-off tests confirmed an adhesion improvement of the epoxy coating filled by the Co-doped Fe³O4 nanoparticles.

17.
ACS Appl Mater Interfaces ; 12(10): 11922-11933, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32067462

RESUMO

Nanoporous carbon (HNC) with a flake and nanotubular morphology and a high specific surface area is prepared by using natural halloysite nanotubes (HNTs), a low-cost and naturally available clay material with a mixture of flaky and tubular morphology. A controlled pore-filling technique is used to selectively control the porosity, morphology, and the specific surface area of the HNC. Activated nanoporous carbon (AHNC) with a high specific surface area is also prepared by using HNT together with the activation process with zinc chloride (ZnCl2). HNC exhibits flakes and tubular morphologies, which offer a high specific surface area (837 m2/g). The specific surface area of AHNC is 1646 m2/g, 74 times greater than the specific surface area of pure HNT (22.5 m2/g). These data revealed that the single-step activation combined with the nanotemplating results in creating a huge impact on the specific surface area of the HNC. Both HNC and AHNC are employed as adsorbents for CO2 adsorption at different pressures and adsorption temperatures. The CO2 adsorption capacity of AHNC is 25.7 mmol/g at 0 °C, which is found to be significantly higher than that of activated carbon (AC), mesoporous carbon (CMK-3), mesoporous carbon nitride (MCN-1), and multiwalled carbon nanotube (MWCNT). AHNC is also tested as an electroactive material and demonstrates good supercapacitance, cyclic stability, and high capacitance retention. Specific capacitance of AHNC in the aqueous electrolyte is 197 F/g at 0.3 A/g, which is higher than that of AC, MWCNT, and CMK-3. The technique adopted for the preparation of both HNC and AHNC is quite unique and simple, has the potential to replace the existing highly expensive and sophisticated mesoporous silica-based nanotemplating strategy, and could also be applied for the fabrication of series of advanced nanostructures with unique functionalities.

18.
Sci Rep ; 10(1): 909, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969608

RESUMO

In this study, chitosan and alginate were selected to prepare alginate/chitosan nanoparticles to load the drug lovastatin by the ionic gelation method. The synthesized nanoparticles loaded with drug were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), laser scattering and differential scanning calorimetry (DSC) methods. The FTIR spectrum of the alginate/chitosan/lovastatin nanoparticles showed that chitosan and alginate interacted with lovastatin through hydrogen bonding and dipolar-dipolar interactions between the C-O, C=O, and OH groups in lovastatin, the C-O, NH, and OH groups in chitosan and the C-O, C=O, and OH groups in alginate. The laser scattering results and SEM images indicated that the alginate/chitosan/lovastatin nanoparticles have a spherical shape with a particle size in the range of 50-80 nm. The DSC diagrams displayed that the melting temperature of the alginate/chitosan/lovastatin nanoparticles was higher than that of chitosan and lower than that of alginate. This result means that the alginate and chitosan interact together, so that the nanoparticles have a larger crystal degree when compared with alginate and chitosan individually. Investigations of the in vitro lovastatin release from the alginate/chitosan/lovastatin nanoparticles under different conditions, including different alginate/chitosan ratios, different solution pH values and different lovastatin contents, were carried out by ultraviolet-visible spectroscopy. The rate of drug release from the nanoparticles is proportional to the increase in the solution pH and inversely proportional to the content of the loaded lovastatin. The drug release process is divided into two stages: a rapid stage over the first 10 hr, then the release becomes gradual and stable. The Korsmeyer-Peppas model is most suitable for the lovastatin release process from the alginate/chitosan/lovastatin nanoparticles in the first stage, and then the drug release complies with other models depending on solution pH in the slow release stage. In addition, the toxicity of alginate/chitosan/lovastatin (abbreviated ACL) nanoparticles was sufficiently low in mice in the acute toxicity test. The LD50 of the drug was higher than 5000 mg/kg, while in the subchronic toxicity test with treatments of 100 mg/kg and 300 mg/kg ACL nanoparticles, there were no abnormal signs, mortality, or toxicity in general to the function or structure of the crucial organs. The results show that the ACL nanoparticles are safe in mice and that these composite nanoparticles might be useful as a new drug carrier.


Assuntos
Alginatos , Quitosana , Portadores de Fármacos , Liberação Controlada de Fármacos , Lovastatina , Nanopartículas , Alginatos/química , Alginatos/toxicidade , Animais , Varredura Diferencial de Calorimetria , Quitosana/química , Quitosana/toxicidade , Cristalização , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Lovastatina/química , Lovastatina/toxicidade , Camundongos , Nanopartículas/toxicidade , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Toxicidade
19.
J Nanosci Nanotechnol ; 19(12): 7892-7898, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31196305

RESUMO

Here we report on the structural characterization and the hydrogen storage performance of naturally derived halloysite nanotubes (HNTs). HNTs were mined from different deposits in Australia and purified with different processes including crushing, blunging, reblunging, sedimentation and filtration. The clay materials were characterized by different techniques such as powder XRD, TGA, XPS, FTIR spectroscopy, SEM, TEM, and N2 sorption. Characterization results revealed that they are highly porous in nature with tubular morphology and exhibited excellent thermal stability. Among the halloysite materials studied, HNT1 which is having higher halloysite content and less kaolinite exhibited hydrogen uptake of 0.5 wt.% at 1 bar and -196 °C, which is increased to 1.33 wt.% when the pressure raised to 48 bar. High hydrogen uptake was linked with the high surface area, hollow tubular aluminosilicate structure and the large interlayer spacing of the HNTs as they favour physisorption of hydrogen. It was also demonstrated that HNT1 is considered to be better material than some of the materials reported so far in terms of their cost-effectiveness and environmental safety for the hydrogen storage.

20.
Chem Commun (Camb) ; 50(44): 5915-8, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24763453

RESUMO

New members of Ruddlesden-Popper type layered oxychloride compounds, Sr2MO2Cl2 (M = Mn, Ni) and Ba2PdO2Cl2, were synthesized under high-pressure conditions. Synchrotron XRD analysis revealed that all the phases adopt the tetragonal space group I4/mmm, where two-dimensional sheets composed of corner-sharing MO4/PdO4 squares were separated by rock-salt SrCl/BaCl layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA