Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 255: 128040, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981284

RESUMO

The use of porous scaffolds with appropriate mechanical and biological features for the host tissue is one of the challenges in repairing critical-size bone defects. With today's three-dimensional (3D) printing technology, scaffolds can be customized and personalized, thereby eliminating the problems associated with conventional methods. In this work, after preparing Ti6Al4V/Calcium phosphate (Ti64@CaP) core-shell nanocomposite via a solution-based process, by taking advantage of fused deposition modeling (FDM), porous poly(lactic acid) (PLA)-Ti64@CaP nanocomposite scaffolds were fabricated. Scanning electron microscope (SEM) showed that nanostructured calcium phosphate was distributed uniformly on the surface of Ti64 particles. Also, X-ray diffraction (XRD) indicated that calcium phosphate forms an octacalcium phosphate (OCP) phase. As a result of incorporating 6 wt% Ti64@CaP into the PLA, the compressive modulus and ultimate compressive strength values increased from 1.4 GPa and 29.5 MPa to 2.0 GPa and 53.5 MPa, respectively. Furthermore, the differential scanning calorimetry results revealed an increase in the glass transition temperature of PLA, rising from 57.0 to 62.4 °C, due to the addition of 6 wt% Ti64@CaP. However, it is worth noting that there was a moderate decrease in the crystallization and melting temperatures of the nanocomposite filament, which dropped from 97.0 to 89.5 °C and 167 to 162.9 °C, respectively. The scaffolds were seeded with human adipose tissue-derived mesenchymal stem cells (hADSCs) to investigate their biocompatibility and cell proliferation. Calcium deposition, ALP activity, and bone-related proteins and genes were also used to evaluate the bone differentiation potential of hADSCs. The obtained results showed that introducing Ti64@CaP considerably improved in vitro biocompatibility, facilitating the attachment, differentiation, and proliferation of hADSCs. Considering the findings of this study, the 3D-printed nanocomposite scaffold could be considered a promising candidate for bone tissue engineering applications.


Assuntos
Nanocompostos , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Osso e Ossos , Poliésteres/química , Engenharia Tecidual/métodos , Nanocompostos/química , Fosfatos de Cálcio/química , Impressão Tridimensional , Porosidade
2.
Sci Rep ; 13(1): 14120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644122

RESUMO

As a bone tissue engineering material, polylactic acid (PLA) has received significant attention and interest due to its ease of processing and biocompatibility. However, its insufficient mechanical properties and poor wettability are two major drawbacks that limit its extensive use. For this purpose, the present study uses in-situ cold argon plasma treatment coupled with a fused deposition modeling printer to enhance the physio-mechanical and biological behavior of 3D-printed PLA scaffolds. Following plasma treatment, field emission scanning electron microscopy images indicated that the surface of the modified scaffold became rough, and the interlayer bonding was enhanced. This resulted in an improvement in the tensile properties of samples printed in the X, Y, and Z directions, with the enhancement being more significant in the Z direction. Additionally, the root mean square value of PLA scaffolds increased (up to 70-fold) after plasma treatment. X-ray photoelectron spectroscopy analysis demonstrated that the plasma technique increased the intensity of oxygen-containing bonds, thereby reducing the water contact angle from 92.5° to 42.1°. The in-vitro degradation study also demonstrated that argon plasma treatment resulted in a 77% increase in PLA scaffold degradation rate. Furthermore, the modified scaffold improved the viability, attachment, and proliferation of human adipose-derived stem cells. These findings suggest that in-situ argon plasma treatment may be a facile and effective method for improving the properties of 3D-printed parts for bone tissue engineering and other applications.


Assuntos
Gases em Plasma , Humanos , Gases em Plasma/farmacologia , Argônio , Poliésteres , Impressão Tridimensional
3.
Sci Rep ; 13(1): 3139, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823295

RESUMO

The mechanical and biological properties of polylactic acid (PLA) need to be further improved in order to be used for bone tissue engineering (BTE). Utilizing a material extrusion technique, three-dimensional (3D) PLA-Ti6Al4V (Ti64) scaffolds with open pores and interconnected channels were successfully fabricated. In spite of the fact that the glass transition temperature of PLA increased with the addition of Ti64, the melting and crystallization temperatures as well as the thermal stability of filaments decreased slightly. However, the addition of 3-6 wt% Ti64 enhanced the mechanical properties of PLA, increasing the ultimate compressive strength and compressive modulus of PLA-3Ti64 to 49.9 MPa and 1.9 GPa, respectively. Additionally, the flowability evaluations revealed that all composite filaments met the print requirements. During the plasma treatment of scaffolds, not only was the root-mean-square (Rq) of PLA (1.8 nm) increased to 60 nm, but also its contact angle (90.4°) significantly decreased to (46.9°). FTIR analysis confirmed the higher hydrophilicity as oxygen-containing groups became more intense. By virtue of the outstanding role of plasma treatment as well as Ti64 addition, a marked improvement was observed in Wharton's jelly mesenchymal stem cell attachment, proliferation (4',6-diamidino-2-phenylindole staining), and differentiation (Alkaline phosphatase and Alizarin Red S staining). Based on these results, it appears that the fabricated scaffolds have potential applications in BTE.


Assuntos
Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Poliésteres/química , Engenharia Tecidual/métodos , Regeneração Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA