Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Cell ; 146(6): 889-903, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21925314

RESUMO

Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.


Assuntos
Aberrações Cromossômicas , Reparo do DNA , Deficiências do Desenvolvimento/genética , Neoplasias/genética , Sequência de Bases , Criança , Pré-Escolar , Quebra Cromossômica , Hibridização Genômica Comparativa , Replicação do DNA , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Dados de Sequência Molecular
2.
Mol Genet Metab ; 142(4): 108513, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38917675

RESUMO

INTRODUCTION: Congenital disorders of glycosylation (CDG) are a continuously expanding group of monogenic disorders that disrupt glycoprotein and glycolipid biosynthesis, leading to multi-systemic manifestations. These disorders are categorized into various groups depending on which part of the glycosylation process is impaired. The cardiac manifestations in CDG can significantly differ, not only across different types but also among individuals with the same genetic cause of CDG. Cardiomyopathy is an important phenotype in CDG. The clinical manifestations and progression of cardiomyopathy in CDG patients have not been well characterized. This study aims to delineate common patterns of cardiomyopathy across a range of genetic causes of CDG and to propose baseline screening and follow-up evaluation for this patient population. METHODS: Patients with molecular confirmation of CDG who were enrolled in the prospective or memorial arms of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study were ascertained for the presence of cardiomyopathy based on a retrospective review of their medical records. All patients were evaluated by clinical geneticists who are members of FCDGC at their respective academic centers. Patients were screened for cardiomyopathy, and detailed data were retrospectively collected. We analyzed their clinical and molecular history, imaging characteristics of cardiac involvement, type of cardiomyopathy, age at initial presentation of cardiomyopathy, additional cardiac features, the treatments administered, and their clinical outcomes. RESULTS: Of the 305 patients with molecularly confirmed CDG participating in the FCDGC natural history study as of June 2023, 17 individuals, nine females and eight males, were identified with concurrent diagnoses of cardiomyopathy. Most of these patients were diagnosed with PMM2-CDG (n = 10). However, cardiomyopathy was also observed in other diagnoses, including PGM1-CDG (n = 3), ALG3-CDG (n = 1), DPM1-CDG (n = 1), DPAGT1-CDG (n = 1), and SSR4-CDG (n = 1). All PMM2-CDG patients were reported to have hypertrophic cardiomyopathy. Dilated cardiomyopathy was observed in three patients, two with PGM1-CDG and one with ALG3-CDG; left ventricular non-compaction cardiomyopathy was diagnosed in two patients, one with PGM1-CDG and one with DPAGT1-CDG; two patients, one with DPM1-CDG and one with SSR4-CDG, were diagnosed with non-ischemic cardiomyopathy. The estimated median age of diagnosis for cardiomyopathy was 5 months (range: prenatal-27 years). Cardiac improvement was observed in three patients with PMM2-CDG. Five patients showed a progressive course of cardiomyopathy, while the condition remained unchanged in eight individuals. Six patients demonstrated pericardial effusion, with three patients exhibiting cardiac tamponade. One patient with SSR4-CDG has been recently diagnosed with cardiomyopathy; thus, the progression of the disease is yet to be determined. One patient with PGM1-CDG underwent cardiac transplantation. Seven patients were deceased, including five with PMM2-CDG, one with DPAGT1-CDG, and one with ALG3-CDG. Two patients died of cardiac tamponade from pericardial effusion; for the remaining patients, cardiomyopathy was not necessarily the primary cause of death. CONCLUSIONS: In this retrospective study, cardiomyopathy was identified in ∼6% of patients with CDG. Notably, the majority, including all those with PMM2-CDG, exhibited hypertrophic cardiomyopathy. Some cases did not show progression, yet pericardial effusions were commonly observed, especially in PMM2-CDG patients, occasionally escalating to life-threatening cardiac tamponade. It is recommended that clinicians managing CDG patients, particularly those with PMM2-CDG and PGM1-CDG, be vigilant of the cardiomyopathy risk and risk for potentially life-threatening pericardial effusions. Cardiac surveillance, including an echocardiogram and EKG, should be conducted at the time of diagnosis, annually throughout the first 5 years, followed by check-ups every 2-3 years if no concerns arise until adulthood. Subsequently, routine cardiac examinations every five years are advisable. Additionally, patients with diagnosed cardiomyopathy should receive ongoing cardiac care to ensure the effective management and monitoring of their condition. A prospective study will be required to determine the true prevalence of cardiomyopathy in CDG.

3.
Mol Genet Metab ; 142(4): 108509, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38959600

RESUMO

OBJECTIVE: Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS: We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS: Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION: The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.

4.
Am J Med Genet A ; 194(3): e63461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953071

RESUMO

The MT-TL2 m.12315G>A pathogenic variant has previously been reported in five individuals with mild clinical phenotypes. Herein we report the case of a 5-year-old child with heteroplasmy for this variant who developed neurological regression and stroke-like episodes similar to those observed in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochemical evaluation revealed depletion of arginine on plasma amino acid analysis and low z-scores for citrulline on untargeted plasma metabolomics analysis. These findings suggested that decreased availability of nitric oxide may have contributed to the stroke-like episodes. The use of intravenous arginine during stroke-like episodes and daily enteral L-citrulline supplementation normalized her biochemical values of arginine and citrulline. Untargeted plasma metabolomics showed the absence of nicotinamide and 1-methylnicotinamide, and plasma total glutathione levels were low; thus, nicotinamide riboside and N-acetylcysteine therapies were initiated. This report expands the phenotype associated with the rare mitochondrial variant MT-TL2 m.12315G>A to include neurological regression and a MELAS-like phenotype. Individuals with this variant should undergo in-depth biochemical analysis to include untargeted plasma metabolomics, plasma amino acids, and glutathione levels to help guide a targeted approach to treatment.


Assuntos
Acidose Láctica , Síndrome MELAS , Encefalomiopatias Mitocondriais , Acidente Vascular Cerebral , Pré-Escolar , Feminino , Humanos , Arginina/genética , Citrulina , Glutationa/metabolismo , Síndrome MELAS/diagnóstico , Síndrome MELAS/genética , Síndrome MELAS/complicações , Doadores de Óxido Nítrico/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
5.
Am J Med Genet A ; 194(7): e63589, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38469956

RESUMO

PARS2 encodes an aminoacyl-tRNA synthetase that catalyzes the ligation of proline to mitochondrial prolyl-tRNA molecules. Diseases associated with PARS2 primarily affect the central nervous system, causing early infantile developmental epileptic encephalopathies (EIDEE; DEE75; MIM #618437) with infantile-onset neurodegeneration. Dilated cardiomyopathy has also been reported in the affected individuals. About 10 individuals to date have been described with pathogenic biallelic variants in PARS2. While many of the reported individuals succumbed to the disease in the first two decades of life, autopsy findings have not yet been reported. Here, we describe neuropathological findings in a deceased male with evidence of intracranial calcifications in the basal ganglia, thalamus, cerebellum, and white matter, similar to Aicardi-Goutières syndrome. This report describes detailed autopsy findings in a child with PARS2-related mitochondrial disease and provides plausible evidence that intracranial calcifications may be a previously unrecognized feature of this disorder.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Calcinose , Doenças Mitocondriais , Malformações do Sistema Nervoso , Humanos , Calcinose/genética , Calcinose/patologia , Masculino , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Mitocondriais/diagnóstico por imagem , Aminoacil-tRNA Sintetases/genética , Lactente , Mutação/genética , Diagnóstico Diferencial , Encéfalo/patologia , Encéfalo/diagnóstico por imagem
6.
BMC Neurol ; 24(1): 87, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438854

RESUMO

BACKGROUND: RARS2-related mitochondrial disorder is an autosomal recessive mitochondrial encephalopathy caused by biallelic pathogenic variants in the gene encoding the mitochondrial arginyl-transfer RNA synthetase 2 (RARS2, MIM *611524, NM_020320.5). RARS2 catalyzes the transfer of L-arginine to its cognate tRNA during the translation of mitochondrially-encoded proteins. The classical presentation of RARS2-related mitochondrial disorder includes pontocerebellar hypoplasia (PCH), progressive microcephaly, profound developmental delay, feeding difficulties, and hypotonia. Most patients also develop severe epilepsy by three months of age, which consists of focal or generalized seizures that frequently become pharmacoresistant and lead to developmental and epileptic encephalopathy (DEE). CASE PRESENTATION: Here, we describe a six-year-old boy with developmental delay, hypotonia, and failure to thrive who developed an early-onset DEE consistent with Lennox-Gastaut Syndrome (LGS), which has not previously been observed in this disorder. He had dysmorphic features including bilateral macrotia, overriding second toes, a depressed nasal bridge, retrognathia, and downslanting palpebral fissures, and he did not demonstrate progressive microcephaly. Whole genome sequencing identified two variants in RARS2, c.36 + 1G > T, a previously unpublished variant that is predicted to affect splicing and is, therefore, likely pathogenic and c.419 T > G (p.Phe140Cys), a known pathogenic variant. He exhibited significant, progressive generalized brain atrophy and ex vacuo dilation of the supratentorial ventricular system on brain MRI and did not demonstrate PCH. Treatment with a ketogenic diet (KD) reduced seizure frequency and enabled him to make developmental progress. Plasma untargeted metabolomics analysis showed increased levels of lysophospholipid and sphingomyelin-related metabolites. CONCLUSIONS: Our work expands the clinical spectrum of RARS2-related mitochondrial disorder, demonstrating that patients can present with dysmorphic features and an absence of progressive microcephaly, which can help guide the diagnosis of this condition. Our case highlights the importance of appropriate seizure phenotyping in this condition and indicates that patients can develop LGS, for which a KD may be a viable therapeutic option. Our work further suggests that analytes of phospholipid metabolism may serve as biomarkers of mitochondrial dysfunction.


Assuntos
Arginina-tRNA Ligase , Microcefalia , Doenças Mitocondriais , Humanos , Masculino , Criança , Microcefalia/genética , Hipotonia Muscular , Fenótipo , Doenças Mitocondriais/genética , Convulsões , Arginina-tRNA Ligase/genética
7.
Genet Med ; 25(4): 100352, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36473599

RESUMO

PURPOSE: TANGO2 deficiency disorder (TDD), an autosomal recessive disease first reported in 2016, is characterized by neurodevelopmental delay, seizures, intermittent ataxia, hypothyroidism, and life-threatening metabolic and cardiac crises. The purpose of this study was to define the natural history of TDD. METHODS: Data were collected from an ongoing natural history study of patients with TDD enrolled between February 2019 and May 2022. Data were obtained through phone or video based parent interviews and medical record review. RESULTS: Data were collected from 73 patients (59% male) from 57 unrelated families living in 16 different countries. The median age of participants at the time of data collection was 9.0 years (interquartile range = 5.3-15.9 years, range = fetal to 31.8 years). A total of 24 different TANGO2 alleles were observed. Patients showed normal development in early infancy, with progressive delay in developmental milestones thereafter. Symptoms included ataxia, dystonia, and speech difficulties, typically starting between the ages of 1 to 3 years. A total of 46/71 (65%) patients suffered metabolic crises, and of those, 30 (65%) developed cardiac crises. Metabolic crises were significantly decreased after the initiation of B-complex or multivitamin supplementation. CONCLUSION: We provide the most comprehensive review of natural history of TDD and important observational data suggesting that B-complex or multivitamins may prevent metabolic crises.


Assuntos
Ataxia , Convulsões , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Gravidez , Cuidado Pré-Natal
8.
Genet Med ; 25(6): 100314, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305855

RESUMO

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Assuntos
Falência Hepática Aguda , Falência Hepática , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Acetilcisteína/uso terapêutico , Falência Hepática/tratamento farmacológico , Falência Hepática/genética , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/genética , Proteínas Mitocondriais/genética , Mutação , Estudos Retrospectivos , tRNA Metiltransferases/genética
9.
Am J Med Genet A ; 191(5): 1366-1372, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751706

RESUMO

TMEM70 deficiency causing mitochondrial complex V deficiency, nuclear type 2 (MIM: 614052) is the most common nuclear encoded defect affecting ATP synthase and has been well described in the literature as being characterized by neonatal or infantile onset of poor feeding, hypotonia, lethargy, respiratory compromise, heart failure, lactic acidosis, hyperammonemia, and 3-methylglutaconic aciduria progressing to a phenotype of developmental delay, failure to thrive, short stature, nonprogressive cardiomyopathy, microcephaly, facial dysmorphisms, hypospadias, persistent pulmonary hypertension of the newborn, and Wolff-Parkinson-White syndrome, as well as metabolic crises followed by developmental regression. The patient with TMEM70 deficiency herein reported has the unique presentation of aortic root dilatation, differing facial dysmorphisms, and no history of neonatal metabolic decompensation or developmental delay, as well as a plasma metabolomics signature, including elevated 3-methylglutaconic acid, 3-methylglutarylcarnitine, alanine, and lactate, in addition to the commonly described increased 3-methylglutaconic acid on urine organic acid analysis that helped aid in the diagnostic interpretation of variants of uncertain significance in TMEM70.


Assuntos
Aorta Torácica , Cardiomiopatias , Masculino , Humanos , Dilatação , Fenótipo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética
10.
Am J Med Genet A ; 191(3): 776-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537114

RESUMO

WWOX biallelic loss-of-function pathogenic single nucleotide variants (SNVs) and copy number variants (CNVs) including exonic deletions and duplications cause WWOX-related epileptic encephalopathy (WOREE) syndrome. This disorder is characterized by refractory epilepsy, axial hypotonia, peripheral hypertonia, progressive microcephaly, and premature death. Here we report five patients with WWOX biallelic predicted null variants identified by exome sequencing (ES), genome sequencing (GS), and/or chromosomal microarray analysis (CMA). SNVs and intragenic deletions of one or more exons were commonly reported in WOREE syndrome patients which made the genetic diagnosis challenging and required a combination of different diagnostic technologies. These patients presented with severe, developmental and epileptic encephalopathy (DEE), and other cardinal features consistent with WOREE syndrome. This report expands the clinical phenotype associated with this condition, including failure to thrive in most patients and epilepsy that responded to a ketogenic diet in three patients. Dysmorphic features and abnormal prenatal findings were not commonly observed. Additionally, recurrent pancreatitis and sensorineural hearing loss each were observed in single patients. In summary, these phenotypic features broaden the clinical spectrum of WOREE syndrome.


Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Síndromes Epilépticas , Feminino , Gravidez , Humanos , Epilepsia/diagnóstico , Epilepsia/genética , Síndromes Epilépticas/genética , Encefalopatias/genética , Epilepsia Generalizada/genética , Éxons , Oxidorredutase com Domínios WW/genética , Proteínas Supressoras de Tumor/genética
11.
Mol Genet Metab ; 137(1-2): 40-48, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35914366

RESUMO

Mitochondrial DNA (mtDNA) replication depends on the mitochondrial import of hundreds of nuclear encoded proteins that control the mitochondrial genome maintenance and integrity. Defects in these processes result in an expanding group of disorders called mtDNA maintenance defects that are characterized by mtDNA depletion and/or multiple mtDNA deletions with variable phenotypic manifestations. As it applies for mitochondrial disorders in general, current treatment options for mtDNA maintenance defects are limited. Lately, with the development of model organisms, improved understanding of the pathophysiology of these disorders, and a better knowledge of their natural history, the number of preclinical studies and existing and planned clinical trials has been increasing. In this review, we discuss recent preclinical studies and current and future clinical trials concerning potential therapeutic options for the different mtDNA maintenance defects.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Doenças Mitocondriais/metabolismo
12.
Mol Genet Metab ; 136(2): 101-110, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35637064

RESUMO

The NAD(P)HX repair system is a metabolite damage repair mechanism responsible for restoration of NADH and NADPH after their inactivation by hydration. Deficiency in either of its two enzymes, NAD(P)HX dehydratase (NAXD) or NAD(P)HX epimerase (NAXE), causes a fatal neurometabolic disorder characterized by decompensations precipitated by inflammatory stress. Clinical findings include rapidly progressive muscle weakness, ataxia, ophthalmoplegia, and motor and cognitive regression, while neuroimaging abnormalities are subtle or nonspecific, making a clinical diagnosis challenging. During stress, nonenzymatic conversion of NAD(P)H to NAD(P)HX increases, and in the absence of repair, NAD(P)H is depleted, and NAD(P)HX accumulates, leading to decompensation; however, the contribution of each to the metabolic derangement is not established. Herein, we summarize the clinical knowledge of NAXE deficiency from 30 cases and lessons learned about disease pathogenesis from cell cultures and model organisms and describe a metabolomics signature obtained by untargeted metabolomics analysis in one case at the time of crisis and after initiation of treatment. Overall, biochemical findings support a model of acute depletion of NAD+, signs of mitochondrial dysfunction, and altered lipidomics. These findings are further substantiated by untargeted metabolomics six months post-crisis showing that niacin supplementation reverses primary metabolomic abnormalities concurrent with improved clinical status.


Assuntos
Doenças Metabólicas , NADP , NAD , Racemases e Epimerases , Animais , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , NAD/isolamento & purificação , NADP/metabolismo , Racemases e Epimerases/deficiência , Racemases e Epimerases/metabolismo
13.
Mol Genet Metab ; 136(2): 125-131, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606253

RESUMO

OBJECTIVE: To harmonize terminology in mitochondrial medicine, we propose revised clinical criteria for primary mitochondrial syndromes. METHODS: The North American Mitochondrial Disease Consortium (NAMDC) established a Diagnostic Criteria Committee comprised of members with diverse expertise. It included clinicians, researchers, diagnostic laboratory directors, statisticians, and data managers. The Committee conducted a comprehensive literature review, an evaluation of current clinical practices and diagnostic modalities, surveys, and teleconferences to reach consensus on syndrome definitions for mitochondrial diseases. The criteria were refined after manual application to patients enrolled in the NAMDC Registry. RESULTS: By building upon published diagnostic criteria and integrating recent advances, NAMDC has generated updated consensus criteria for the clinical definition of classical mitochondrial syndromes. CONCLUSIONS: Mitochondrial diseases are clinically, biochemically, and genetically heterogeneous and therefore challenging to classify and diagnose. To harmonize terminology, we propose revised criteria for the clinical definition of mitochondrial disorders. These criteria are expected to standardize the diagnosis and categorization of mitochondrial diseases, which will facilitate future natural history studies and clinical trials.


Assuntos
Doenças Mitocondriais , Consenso , Humanos , Doenças Mitocondriais/diagnóstico , América do Norte , Sistema de Registros , Síndrome
14.
Am J Med Genet A ; 188(9): 2718-2723, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796094

RESUMO

Coffin-Siris syndrome (CSS) is an autosomal dominant neurodevelopmental syndrome that can present with a variety of structural birth defects. Pathogenic variants in 12 genes have been shown to cause CSS. Most of these genes encode proteins that are a part of the mammalian switch/sucrose non-fermentable (mSWI/SNF; BAF) complex. An association between genes that cause CSS and congenital diaphragmatic hernia (CDH) has been suggested based on case reports and the analysis of CSS and CDH cohorts. Here, we describe an unpublished individual with CSS and CDH, and we report additional clinical information on four published cases. Data from these individuals, and a review of the literature, provide evidence that deleterious variants in ARID1B, ARID1A, SMARCB1, SMARCA4, SMARCE1, ARID2, DPF2, and SMARCC2, which are associated with CSS types 1-8, respectively, are associated with the development of CDH. This suggests that additional genetic testing to identify a separate cause of CDH in an individual with CSS may be unwarranted, and that comprehensive genetic testing for individuals with non-isolated CDH should include an evaluation of CSS-related genes. These data also suggest that the mSWI/SNF (BAF) complex may play an important role in diaphragm development.


Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Hérnias Diafragmáticas Congênitas , Deficiência Intelectual , Micrognatismo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas Cromossômicas não Histona , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão/complicações , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/patologia , Humanos , Deficiência Intelectual/patologia , Micrognatismo/genética , Micrognatismo/patologia , Pescoço/anormalidades , Proteínas Nucleares/genética , Fatores de Transcrição/genética
15.
Am J Med Genet A ; 188(1): 259-268, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510712

RESUMO

Sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD; MIM #616084) is an autosomal recessive disorder of mitochondrial and cytosolic tRNA processing caused by pathogenic, biallelic variants in TRNT1. Other features of this disorder include central nervous system, renal, cardiac, ophthalmological features, and sensorineural hearing impairment. SIFD was first described in 2013 and to date, it has been reported in 46 patients. Herein, we review the literature and describe two siblings with SIFD and note the novel phenotype of hypoglycemia in the context of growth hormone (GH) deficiency. GH deficiency without hypoglycemia has previously been reported in three patients with SIFD, but GH deficiency had not been firmly ascribed to SIFD. We propose to expand the phenotype to include GH deficiency, hypoglycemia, and previously unreported dysmorphic features. Furthermore, we highlight the intrafamilial variability of the disease by the discordance of our patients' clinical phenotypes and biochemical profiles measured by untargeted metabolomics analysis. Several metabolomic abnormalities were observed in both patients, and these may represent a potential biochemical signature for SIFD.


Assuntos
Anemia Sideroblástica , Anemia Sideroblástica/genética , Febre/complicações , Febre/genética , Humanos , Mutação , Nucleotidiltransferases/genética , Fenótipo
16.
Mol Genet Metab ; 132(2): 146-153, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33485800

RESUMO

TRMU is a nuclear gene crucial for mitochondrial DNA translation by encoding tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase, which thiolates mitochondrial tRNA. Biallelic pathogenic variants in TRMU are associated with transient infantile liver failure. Other less common presentations such as Leigh syndrome, myopathy, and cardiomyopathy have been reported. Recent studies suggested that provision of exogenous L-cysteine or N-acetylcysteine may ameliorate the effects of disease-causing variants and improve the natural history of the disease. Here, we report six infants with biallelic TRMU variants, including four previously unpublished patients, all treated with exogenous cysteine. We highlight the first report of an affected patient undergoing orthotopic liver transplantation, the long-term effects of cysteine supplementation, and the ability of the initial presentation to mimic multiple inborn errors of metabolism. We propose that TRMU deficiency should be suspected in all children presenting with persistent lactic acidosis and hypoglycemia, and that combined N-acetylcysteine and L-cysteine supplementation should be considered prior to molecular diagnosis, as this is a low-risk approach that may increase survival and mitigate the severity of the disease course.


Assuntos
Doença de Leigh/terapia , Falência Hepática/terapia , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , tRNA Metiltransferases/genética , Acetilcisteína/administração & dosagem , Acetilcisteína/metabolismo , Acidose/genética , Acidose/metabolismo , Cisteína/administração & dosagem , Cisteína/metabolismo , DNA Mitocondrial/genética , Feminino , Humanos , Lactente , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Falência Hepática/genética , Falência Hepática/metabolismo , Falência Hepática/patologia , Transplante de Fígado/métodos , Masculino , Mitocôndrias/enzimologia , Proteínas Mitocondriais/deficiência , RNA de Transferência/genética , tRNA Metiltransferases/deficiência
17.
Am J Med Genet A ; 185(10): 3118-3121, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159722

RESUMO

Congenital disorders of glycosylation are a group of rare monogenic inborn errors of metabolism caused by defective glycoprotein and glycolipid glycan synthesis and attachment. Here, we present a patient with galactose epimerase deficiency, also known as GALE deficiency, accompanied by pancytopenia and immune dysregulation. She was first identified by an abnormal newborn screen for galactosemia with subsequent genetic evaluation due to pancytopenia and immune dysregulation. The evaluation ultimately revealed that her known diagnosis of GALE deficiency was the cause of her hematologic and immune abnormalities. These findings further expand the clinical spectrum of disease of congenital disorders of glycosylation.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Galactosemias/genética , UDPglucose 4-Epimerase/genética , Adulto , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Feminino , Galactosemias/diagnóstico , Galactosemias/patologia , Glicolipídeos/biossíntese , Glicolipídeos/genética , Humanos , Mutação/genética , Fenótipo , Polissacarídeos/biossíntese , Polissacarídeos/genética , UDPglucose 4-Epimerase/deficiência
18.
Am J Hum Genet ; 101(5): 833-843, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100093

RESUMO

Gorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.650G>A (p.Arg217His) and c.649C>T (p.Arg217Cys) in SLC25A24 in five unrelated girls diagnosed with GCMS. Two of the girls had pronounced neonatal progeroid features and were initially diagnosed with Wiedemann-Rautenstrauch syndrome. SLC25A24 encodes a mitochondrial inner membrane ATP-Mg/Pi carrier. In fibroblasts from affected individuals, the mutated SLC25A24 showed normal stability. In contrast to control cells, the probands' cells showed mitochondrial swelling, which was exacerbated upon treatment with hydrogen peroxide (H2O2). The same effect was observed after overexpression of the mutant cDNA. Under normal culture conditions, the mitochondrial membrane potential of the probands' fibroblasts was intact, whereas ATP content in the mitochondrial matrix was lower than that in control cells. However, upon H2O2 exposure, the membrane potential was significantly elevated in cells harboring the mutated SLC25A24. No reduction of mitochondrial DNA copy number was observed. These findings demonstrate that mitochondrial dysfunction with increased sensitivity to oxidative stress is due to the SLC25A24 mutations. Our results suggest that the SLC25A24 mutations induce a gain of pathological function and link mitochondrial ATP-Mg/Pi transport to the development of skeletal and connective tissue.


Assuntos
Anormalidades Múltiplas/genética , Antiporters/genética , Proteínas de Ligação ao Cálcio/genética , Anormalidades Craniofaciais/genética , Craniossinostoses/genética , Permeabilidade do Canal Arterial/genética , Hipertricose/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação/genética , Trifosfato de Adenosina/genética , Adolescente , Criança , Pré-Escolar , Cútis Laxa/genética , DNA Mitocondrial/genética , Exoma/genética , Feminino , Retardo do Crescimento Fetal/genética , Fibroblastos/patologia , Transtornos do Crescimento , Humanos , Peróxido de Hidrogênio/farmacologia , Lactente , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/genética , Progéria/genética
19.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939640

RESUMO

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromatina/metabolismo , Histonas/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas Nucleares/genética , Acetilação , Adolescente , Alelos , Animais , Proteínas de Transporte/genética , Criança , Cromatina/química , Proteínas de Ligação a DNA , Deficiências do Desenvolvimento/genética , Face/anormalidades , Feminino , Histona Acetiltransferases/genética , Humanos , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipotonia Muscular/genética , Síndrome
20.
Am J Hum Genet ; 100(2): 343-351, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132692

RESUMO

Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C>T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p = 1.25 × 10-14). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1.


Assuntos
Catarata/genética , Variação Genética , Deficiência Intelectual/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética , Espasmos Infantis/genética , Alelos , Sequência de Aminoácidos , Encéfalo/diagnóstico por imagem , Catarata/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Microcefalia/genética , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Espasmos Infantis/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA