Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34897488

RESUMO

Pheromonal communication is widespread among living organisms, but in apes and particularly in humans there is currently no strong evidence for such phenomenon. Among primates, lemurs use pheromones to communicate within members of the same species, whereas in some monkeys such capabilities seem to be lost. Chemical communication in humans appears to be impaired by the lack or malfunctioning of biochemical tools and anatomical structures mediating detection of pheromones. Here, we report on a pheromone-carrier protein (SAL) adopting a "reverse chemical ecology" approach to get insights on the structures of potential pheromones in a representative species of lemurs (Microcebus murinus) known to use pheromones, Old-World monkeys (Cercocebus atys) for which chemical communication has been observed, and humans (Homo sapiens), where pheromones and chemical communication are still questioned. We have expressed the SAL orthologous proteins of these primate species, after reconstructing the gene encoding the human SAL, which is disrupted due to a single base mutation preventing its translation into RNA. Ligand-binding experiments with the recombinant SALs revealed macrocyclic ketones and lactones as the best ligands for all three proteins, suggesting cyclopentadecanone, pentadecanolide, and closely related compounds as the best candidates for potential pheromones. Such hypothesis agrees with the presence of a chemical very similar to hexadecanolide in the gland secretions of Mandrillus sphinx, a species closely related to C. atys. Our results indicate that the function of this carrier protein has not changed much during evolution from lemurs to humans, although its physiological role has been certainly impaired in humans.


Assuntos
Lemur , Feromônios , Animais , Ecologia , Humanos , Feromônios/metabolismo , Primatas/genética , Primatas/metabolismo
2.
J Cell Sci ; 134(3)2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33443102

RESUMO

KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.


Assuntos
Transporte Ativo do Núcleo Celular , Proteína KRIT1/metabolismo , Proteína Quinase C-alfa , Células HeLa , Humanos , Fosforilação , Proteína Quinase C-alfa/genética , Acetato de Tetradecanoilforbol
3.
Mass Spectrom Rev ; 41(5): 861-898, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250627

RESUMO

Various protein cross-linking reactions leading to molecular polymerization and covalent aggregates have been described in processed foods. They are an undesired side effect of processes designed to reduce bacterial load, extend shelf life, and modify technological properties, as well as being an expected result of treatments designed to modify raw material texture and function. Although the formation of these products is known to affect the sensory and technological properties of foods, the corresponding cross-linking reactions and resulting protein polymers have not yet undergone detailed molecular characterization. This is essential for describing how their generation can be related to food processing conditions and quality parameters. Due to the complex structure of cross-linked species, bottom-up proteomic procedures developed to characterize various amino acid modifications associated with food processing conditions currently offer a limited molecular description of bridged peptide structures. Recent progress in cross-linking mass spectrometry for the topological characterization of protein complexes has facilitated the development of various proteomic methods and bioinformatic tools for unveiling bridged species, which can now also be used for the detailed molecular characterization of polymeric cross-linked products in processed foods. We here examine their benefits and limitations in terms of evaluating cross-linked food proteins and propose future scenarios for application in foodomics. They offer potential for understanding the protein cross-linking formation mechanisms in processed foods, and how the inherent beneficial properties of treated foodstuffs can be preserved or enhanced.


Assuntos
Proteínas , Proteômica , Reagentes de Ligações Cruzadas/química , Manipulação de Alimentos , Espectrometria de Massas/métodos , Proteínas/química
4.
Appl Environ Microbiol ; 88(1): e0188121, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669446

RESUMO

Streptomyces coelicolor is a model organism for the study of Streptomyces, a genus of Gram-positive bacteria that undergoes a complex life cycle and produces a broad repertoire of bioactive metabolites and extracellular enzymes. This study investigated the production and characterization of membrane vesicles (MVs) in liquid cultures of S. coelicolor M145 from a structural and biochemical point of view; this was achieved by combining microscopic, physical and -omics analyses. Two main populations of MVs, with different sizes and cargos, were isolated and purified. S. coelicolor MV cargo was determined to be complex, containing different kinds of proteins and metabolites. In particular, a total of 166 proteins involved in cell metabolism/differentiation, molecular processing/transport, and stress response were identified in MVs, the latter functional class also being important for bacterial morpho-physiological differentiation. A subset of these proteins was protected from degradation following treatment of MVs with proteinase K, indicating their localization inside the vesicles. Moreover, S. coelicolor MVs contained an array of metabolites, such as antibiotics, vitamins, amino acids, and components of carbon metabolism. In conclusion, this analysis provides detailed information on S. coelicolor MVs under basal conditions and on their corresponding content, which may be useful in the near future to elucidate vesicle biogenesis and functions. IMPORTANCE Streptomycetes are widely distributed in nature and characterized by a complex life cycle that involves morphological differentiation. They are very relevant in industry because they produce about half of all clinically used antibiotics, as well as other important pharmaceutical products of natural origin. Streptomyces coelicolor is a model organism for the study of bacterial differentiation and bioactive molecule production. S. coelicolor produces extracellular vesicles that carry many molecules, such as proteins and metabolites, including antibiotics. The elucidation of S. coelicolor extracellular vesicle cargo will help us to understand different aspects of streptomycete physiology, such as cell communication during differentiation and response to environmental stimuli. Moreover, the capability of these vesicles for carrying different kinds of biomolecules opens up new biotechnological possibilities related to drug delivery. Indeed, decoding the molecular mechanisms involved in cargo selection may lead to the customization of extracellular vesicle content.


Assuntos
Streptomyces coelicolor , Streptomyces , Antibacterianos , Proteínas de Bactérias/genética , Proteínas , Streptomyces coelicolor/genética
5.
Amino Acids ; 54(4): 543-558, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34436666

RESUMO

Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a biochemical and a functional point of view. However, limited data are currently available on the characterization of their post-translational modifications (PTMs) and the functional implication of these structural changes in the tumor environment. In this review, we summarize existing literature data on PTMs of hCA IX and hCA XII, such as disulphide bond formation, phosphorylation, O-/N-linked glycosylation, acetylation and ubiquitination, highlighting, when possible, their specific role in cancer pathological processes.


Assuntos
Anidrases Carbônicas , Neoplasias , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
6.
J Enzyme Inhib Med Chem ; 37(1): 62-68, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894958

RESUMO

Warm-blooded animals may have Malassezia pachydermatis on healthy skin, but changes in the skin microenvironment or host defences induce this opportunistic commensal to become pathogenic. Malassezia infections in humans and animals are commonly treated with azole antifungals. Fungistatic treatments, together with their long-term use, contribute to the selection and the establishment of drug-resistant fungi. To counteract this rising problem, researchers must find new antifungal drugs and enhance drug resistance management strategies. Cyclic adenosine monophosphate, adenylyl cyclase, and bicarbonate have been found to promote fungal virulence, adhesion, hydrolase synthesis, and host cell death. The CO2/HCO3-/pH-sensing in fungi is triggered by HCO3- produced by metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1). It has been demonstrated that the growth of M. globosa can be inhibited in vivo by primary sulphonamides, which are the typical CA inhibitors. Here, we report the cloning, purification, and characterisation of the ß-CA (MpaCA) from the pathogenic fungus M. pachydermatis, which is homologous to the enzyme encoded in the genome of M. globosa and M. restricta, that are responsible for dandruff and seborrhoeic dermatitis. Fungal CAs could be thus considered a new pharmacological target for combating fungal infections and drug resistance developed by most fungi to the already used drugs.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Malassezia/enzimologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/genética , Relação Dose-Resposta a Droga , Estrutura Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
7.
J Enzyme Inhib Med Chem ; 37(1): 1651-1655, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35695123

RESUMO

Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms play an essential role in processes connected to tumorigenesis, as they efficiently accelerate the hydration of carbon dioxide to bicarbonate and proton. In this context, examples are CA IX and CA XII, which were proved to be upregulated in many solid malignancies. On the other hand, cancer and the immune system are inextricably linked, and targeting the immune checkpoints recently was shown to efficiently improve the treatment of malignancies. In this study, we have investigated the expression of CA isoforms in tumour-infiltrating lymphocytes (TILs) that, according to the immunosurveillance theory, were suggested to have a crucial role in the development of colorectal cancer (CRC). T lymphocytes isolated from healthy surrounding mucosa showed a higher CA activity compared to those present in tumour and peripheral blood in the same patients. CA I and II were confirmed as enzyme isoforms involved in the process, as determined by proteomic analysis of corresponding TIL samples. These preliminary findings suggest a dysregulation of the local immune response in the CRC tissues and a loss of effective anticancer mechanisms mediated by CAs therein.


Assuntos
Anidrases Carbônicas , Neoplasias Colorretais , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Humanos , Linfócitos , Proteômica , Relação Estrutura-Atividade
8.
FASEB J ; 34(11): 15146-15163, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32946628

RESUMO

The physiological role played by uncoupling protein 3 (UCP3) in brown adipose tissue (BAT) has not been fully elucidated so far. In the present study, we evaluated the impact of the absence of UCP3 on BAT mitochondrial functionality and morphology. To this purpose, wild type (WT) and UCP3 Knockout (KO) female mice were housed at thermoneutrality (30°C), a condition in which BAT contributes to energy homeostasis independently of its cold-induced thermogenic function. BAT mitochondria from UCP3 KO mice presented a lower ability to oxidize the fatty acids and glycerol-3-phosphate, and an enhanced oxidative stress as revealed by enhanced mitochondrial electron leak, lipid hydroperoxide levels, and induction of antioxidant mitochondrial enzymatic capacity. The absence of UCP3 also influenced the mitochondrial super-molecular protein aggregation, an important feature for fatty acid oxidation rate as well as for adequate cristae organization and mitochondrial shape. Indeed, electron microscopy revealed alterations in mitochondrial morphology in brown adipocytes from KO mice. In the whole, data here reported show that the absence of UCP3 results in a significant alteration of BAT mitochondrial physiology and morphology. These observations could also help to clarify some aspects of the association between metabolic disorders associated with low UCP3 levels, as previously reported in human studies.


Assuntos
Tecido Adiposo Marrom/patologia , Ácidos Graxos/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Termogênese , Proteína Desacopladora 3/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Feminino , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução
9.
J Enzyme Inhib Med Chem ; 36(1): 372-376, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33390061

RESUMO

Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s-1 and kcat/KM value of 3.9 × 107 M-1 s-1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2-94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71-0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1-9.3 mM.


Assuntos
Ânions/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Burkholderia/enzimologia , Anidrases Carbônicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Arsenicais/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácidos Borônicos/farmacologia , Burkholderia/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sulfonamidas/farmacologia , Ácidos Sulfônicos/farmacologia , Compostos de Estanho/farmacologia , Zinco/química , Zinco/metabolismo
10.
J Enzyme Inhib Med Chem ; 36(1): 1000-1006, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33980103

RESUMO

We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s-1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9-13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.


Assuntos
Aminas/farmacologia , Aminoácidos/farmacologia , Burkholderia/enzimologia , Anidrases Carbônicas/metabolismo , Aminas/química , Aminoácidos/química , Anidrases Carbônicas/análise , Relação Dose-Resposta a Droga , Estrutura Molecular , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 22(2)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430028

RESUMO

Carbonic anhydrases (CAs) are essential metalloenzymes in nature, catalyzing the carbon dioxide reversible hydration into bicarbonate and proton. In humans, breathing and many other critical physiological processes depend on this enzymatic activity. The CA superfamily function and inhibition in pathogenic bacteria has recently been the object of significant advances, being demonstrated to affect microbial survival/virulence. Targeting bacterial CAs may thus be a valid alternative to expand the pharmacological arsenal against the emergence of widespread antibiotic resistance. Here, we report an extensive study on the inhibition profile of the recently discovered ι-CA class present in some bacteria, including Burkholderia territorii, namely BteCAι, using substituted benzene-sulfonamides and clinically licensed sulfonamide-, sulfamate- and sulfamide-type drugs. The BteCAι inhibition profile showed: (i) several benzene-sulfonamides with an inhibition constant lower than 100 nM; (ii) a different behavior with respect to other α, ß and γ-CAs; (iii) clinically used drugs having a micromolar affinity. This prototype study contributes to the initial recognition of compounds which efficiently and selectively inhibit a bacterial member of the ι-CA class, for which such a selective inhibition with respect to other protein isoforms present in the host is highly desired and may contribute to the development of novel antimicrobials.


Assuntos
Benzeno/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/genética , Sulfonamidas/farmacologia , Sequência de Aminoácidos/genética , Benzeno/química , Burkholderia/enzimologia , Burkholderia/genética , Anidrases Carbônicas/efeitos dos fármacos , Humanos , Estrutura Molecular , Respiração/genética , Relação Estrutura-Atividade
12.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830480

RESUMO

Fungi are exposed to various environmental variables during their life cycle, including changes in CO2 concentration. CO2 has the potential to act as an activator of several cell signaling pathways. In fungi, the sensing of CO2 triggers cell differentiation and the biosynthesis of proteins involved in the metabolism and pathogenicity of these microorganisms. The molecular machineries involved in CO2 sensing constitute a promising target for the development of antifungals. Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial enzymes in the CO2 sensing systems of fungi, because they catalyze the reversible hydration of CO2 to proton and HCO3-. Bicarbonate in turn boots a cascade of reactions triggering fungal pathogenicity and metabolism. Accordingly, CAs affect microorganism proliferation and may represent a potential therapeutic target against fungal infection. Here, the inhibition of the unique ß-CA (MpaCA) encoded in the genome of Malassezia pachydermatis, a fungus with substantial relevance in veterinary and medical sciences, was investigated using a series of conventional CA inhibitors (CAIs), namely aromatic and heterocyclic sulfonamides. This study aimed to describe novel candidates that can kill this harmful fungus by inhibiting their CA, and thus lead to effective anti-dandruff and anti-seborrheic dermatitis agents. In this context, current antifungal compounds, such as the azoles and their derivatives, have been demonstrated to induce the selection of resistant fungal strains and lose therapeutic efficacy, which might be restored by the concomitant use of alternative compounds, such as the fungal CA inhibitors.


Assuntos
Anidrase Carbônica I/antagonistas & inibidores , Malassezia/efeitos dos fármacos , Micoses/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Animais Domésticos/microbiologia , Antifúngicos/farmacologia , Anidrase Carbônica I/química , Inibidores da Anidrase Carbônica/farmacologia , Humanos , Malassezia/enzimologia , Malassezia/patogenicidade , Estrutura Molecular , Micoses/enzimologia , Micoses/microbiologia , Micoses/veterinária , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202019

RESUMO

Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1-C6, C2-C3, C4-C5) differing from that of insect counterparts (C1-C3, C2-C5, C4-C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destructor OBP1, shows protein folding different from that of insect OBPs, although with some common features. Ligand-binding experiments indicated some affinity to coniferyl aldehyde, but specific ligands may still need to be found among very large molecules, as suggested by the size of the binding pocket.


Assuntos
Receptores Odorantes/metabolismo , Tetranychidae/metabolismo , Sequência de Aminoácidos , Animais , Ligantes , Modelos Moleculares , Estrutura Molecular , Odorantes , Filogenia , Ligação Proteica , Conformação Proteica , Proteoma , Proteômica/métodos , Receptores Odorantes/química , Receptores Odorantes/genética , Tetranychidae/genética
14.
Molecules ; 26(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920529

RESUMO

Plant polyphenols have beneficial antioxidant effects on human health; practices aimed at preserving their content in foods and/or reusing food by-products are encouraged. The impact of the traditional practice of the water curing procedure of chestnuts, which prevents insect/mould damage during storage, was studied to assess the release of polyphenols from the fruit. Metabolites extracted from pericarp and integument tissues or released in the medium from the water curing process were analyzed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and electrospray-quadrupole-time of flight-mass spectrometry (ESI-qTOF-MS). This identified: (i) condensed and hydrolyzable tannins made of (epi)catechin (procyanidins) and acid ellagic units in pericarp tissues; (ii) polyphenols made of gallocatechin and catechin units condensed with gallate (prodelphinidins) in integument counterparts; (iii) metabolites resembling those reported above in the wastewater from the chestnut curing process. Comparative experiments were also performed on aqueous media recovered from fruits treated with processes involving: (i) tap water; (ii) tap water containing an antifungal Lb. pentosus strain; (iii) wastewater from a previous curing treatment. These analyses indicated that the former treatment determines a 6-7-fold higher release of polyphenols in the curing water with respect to the other ones. This event has a negative impact on the luster of treated fruits but qualifies the corresponding wastes as a source of antioxidants. Such a phenomenon does not occur in wastewater from the other curing processes, where the release of polyphenols was reduced, thus preserving the chestnut's appearance. Polyphenol profiling measurements demonstrated that bacterial presence in water hampered the release of pericarp metabolites. This study provides a rationale to traditional processing practices on fruit appearance and qualifies the corresponding wastes as a source of bioactive compounds for other nutraceutical applications.


Assuntos
Aesculus/química , Antioxidantes/química , Extratos Vegetais/química , Polifenóis/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Biflavonoides/química , Biflavonoides/isolamento & purificação , Catequina/química , Catequina/isolamento & purificação , Frutas/química , Humanos , Nozes/química , Extratos Vegetais/farmacologia , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Taninos/química , Água/química
15.
BMC Genomics ; 21(1): 90, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996138

RESUMO

BACKGROUND: Truffles are symbiotic fungi that develop underground in association with plant roots, forming ectomycorrhizae. They are primarily known for the organoleptic qualities of their hypogeous fruiting bodies. Primarily, Tuber magnatum Pico is a greatly appreciated truffle species mainly distributed in Italy and Balkans. Its price and features are mostly depending on its geographical origin. However, the genetic variation within T. magnatum has been only partially investigated as well as its adaptation to several environments. RESULTS: Here, we applied an integrated omic strategy to T. magnatum fruiting bodies collected during several seasons from three different areas located in the North, Center and South of Italy, with the aim to distinguish them according to molecular and biochemical traits and to verify the impact of several environments on these properties. With the proteomic approach based on two-dimensional electrophoresis (2-DE) followed by mass spectrometry, we were able to identify proteins specifically linked to the sample origin. We further associated the proteomic results to an RNA-seq profiling, which confirmed the possibility to differentiate samples according to their source and provided a basis for the detailed analysis of genes involved in sulfur metabolism. Finally, geographical specificities were associated with the set of volatile compounds produced by the fruiting bodies, as quantitatively and qualitatively determined through proton transfer reaction-mass spectrometry (PTR-MS) and gas-chromatography-mass spectrometry (GC-MS). In particular, a partial least squares-discriminant analysis (PLS-DA) model built from the latter data was able to return high confidence predictions of sample source. CONCLUSIONS: Results provide a characterization of white fruiting bodies by a wide range of different molecules, suggesting the role for specific compounds in the responses and adaptation to distinct environments.


Assuntos
Adaptação Biológica , Meio Ambiente , Genômica , Metabolômica , Proteômica , Saccharomycetales/genética , Saccharomycetales/metabolismo , Biologia Computacional , Eletroforese em Gel Bidimensional , Cromatografia Gasosa-Espectrometria de Massas , Genômica/métodos , Metabolômica/métodos , Proteômica/métodos , Transcriptoma , Compostos Orgânicos Voláteis
16.
Biochem Biophys Res Commun ; 522(1): 259-263, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31759632

RESUMO

Carbonyl reductase 1 (CBR1) is an NADP-dependent enzyme that exerts a detoxifying role, which catalyses the transformation of carbonyl-containing compounds. The ability of CBR1 to act on adducts between glutathione and lipid peroxidation derived aldehydes has recently been reported. In the present study, exploiting mass spectrometry and fluorescence spectroscopy, evidence is shown that CBR1 is able to retain NADP(H) at the active site even after extensive dialysis, and that this retention may also occur when the enzyme is performing catalysis. This property, together with the multi-substrate specificity of CBR1 in both directions of red/ox reactions, generates inter-conversion red/ox cycles. This particular feature of CBR1, in the case of the transformation of 3-glutathionyl, 4-hydroxynonanal (GSHNE), which is a key substrate of the enzyme in detoxification, supports the disproportionation reaction of GSHNE without any apparent exchange of the cofactor with the solution. The importance of the cofactor as a prosthetic group for other dehydrogenases exerting a detoxification role is discussed.


Assuntos
Oxirredutases do Álcool/metabolismo , NADP/metabolismo , Oxirredutases do Álcool/química , Domínio Catalítico , Glutationa/análogos & derivados , Glutationa/metabolismo , Humanos , Especificidade por Substrato
17.
J Enzyme Inhib Med Chem ; 35(1): 1450-1461, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32648529

RESUMO

Human carbonic anhydrases (CAs) have become a well-recognized target for the design of inhibitors and activators with biomedical applications. Accordingly, an enormous amount of literature is available on their biochemical, functional and structural aspects. Nevertheless post-translational modifications (PTMs) occurring on these enzymes and their functional implications have been poorly investigated so far. To fill this gap, in this review we have analysed all PTMs occurring on human CAs, as deriving from the search in dedicated databases, showing a widespread occurrence of modification events in this enzyme family. By combining these data with sequence alignments, inspection of 3 D structures and available literature, we have summarised the possible functional implications of these PTMs. Although in some cases a clear correlation between a specific PTM and the CA function has been highlighted, many modification events still deserve further dedicated studies.


Assuntos
Anidrases Carbônicas/metabolismo , Sequência de Aminoácidos , Anidrases Carbônicas/genética , Bases de Dados de Proteínas , Humanos , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência
18.
Mar Drugs ; 18(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717885

RESUMO

Microorganism resistance to conventional antibiotics represents one of the major global health concerns. This paper focuses on a peptide (OctoPartenopin) extracted from suckers of Octopus vulgaris; bioassay-guided chromatographic fractionation was used to identify this sequence, which holds significant antibacterial activity against Gram-positive and Gram-negative bacteria. OctoPartenopin is encrypted within the calponin sequence and was associated with the high levels of proteolytic activity already reported in octopus arm suckers. We synthesized the parent peptide and four analogues; all peptide were tested for their antibacterial and antibiofilm activities. Preliminary antibiofilm experiments showed that that one of the analogues had the best activity in both inhibition and eradication of biofilm of all three microorganisms tested. The occurrence of OctoPartenopin in arm suckers provided novel speculative information on animal behavior, as concerns maternal care of fertilized eggs. Our results highlight that suckers are a rich source of multifaceted peptides to develop alternative antimicrobial agents and food preservatives.


Assuntos
Antibacterianos/farmacologia , Octopodiformes/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento
19.
Proc Natl Acad Sci U S A ; 114(46): E9802-E9810, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29078359

RESUMO

The giant panda Ailuropoda melanoleuca belongs to the family of Ursidae; however, it is not carnivorous, feeding almost exclusively on bamboo. Being equipped with a typical carnivorous digestive apparatus, the giant panda cannot get enough energy for an active life and spends most of its time digesting food or sleeping. Feeding and mating are both regulated by odors and pheromones; therefore, a better knowledge of olfaction at the molecular level can help in designing strategies for the conservation of this species. In this context, we have identified the odorant-binding protein (OBP) repertoire of the giant panda and mapped the protein expression in nasal mucus and saliva through proteomics. Four OBPs have been identified in nasal mucus, while the other two were not detected in the samples examined. In particular, AimelOBP3 is similar to a subset of OBPs reported as pheromone carriers in the urine of rodents, saliva of the boar, and seminal fluid of the rabbit. We expressed this protein, mapped its binding specificity, and determined its crystal structure. Structural data guided the design and preparation of three protein mutants bearing single-amino acid replacements in the ligand-binding pocket, for which the corresponding binding affinity spectra were measured. We also expressed AimelOBP5, which is markedly different from AimelOBP3 and complementary in its binding spectrum. By comparing our binding data with the structures of bamboo volatiles and those of typical mammalian pheromones, we formulate hypotheses on which may be the most relevant semiochemicals for the giant panda.


Assuntos
Bambusa/química , Ecologia , Feromônios/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Olfato/fisiologia , Ursidae/metabolismo , Ração Animal , Animais , Comportamento Animal , Cristalografia por Raios X , Modelos Moleculares , Simulação de Acoplamento Molecular , Mucosa Nasal/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteômica , Coelhos , Receptores Odorantes/genética , Receptores Odorantes/isolamento & purificação , Saliva/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Suínos
20.
Molecules ; 25(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486444

RESUMO

The interconversion of CO2 and HCO3- is catalyzed by a superfamily of metalloenzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1), which maintain the equilibrium between dissolved inorganic CO2 and HCO3-. In the genome of Escherichia coli, a Gram-negative bacterium typically colonizing the lower intestine of warm-blooded organisms, the cyn operon gene includes the CynT gene, encoding for a ß-CA, and CynS gene, encoding for the cyanase. CynT (ß-CA) prevents the depletion of the cellular bicarbonate, which is further used in the reaction catalyzed by cyanase. A second ß-CA (CynT2 or Can or yadF), as well as a γ and ι-CAs were also identified in the E. coli genome. CynT2 is essential for bacterial growth at atmospheric CO2 concentration. Here, we characterized the kinetic properties and the anion inhibition profiles of recombinant CynT2. The enzyme showed a good activity for the physiological CO2 hydratase reaction with the following parameters: kcat = 5.3 × 105 s-1 and kcat/KM = of 4.1 × 107 M-1 s-1. Sulfamide, sulfamate, phenylboronic acid, phenylarsonic acid, and diethyldithiocarbamate were the most effective CynT2 inhibitors (KI = 2.5 to 84 µM). The anions allowed for a detailed understanding of the interaction of inhibitors with the amino acid residues surrounding the catalytic pocket of the enzyme and may be used as leads for the design of more efficient and specific inhibitors.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Escherichia coli/enzimologia , Proteínas de Transporte de Ânions/metabolismo , Ânions , Arsenicais , Ácidos Borônicos/química , Dióxido de Carbono/química , Anidrase Carbônica I/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Catálise , Ditiocarb/química , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Humanos , Concentração de Íons de Hidrogênio , Cinética , Isoformas de Proteínas , Estrutura Secundária de Proteína , Prótons , Proteínas Recombinantes/química , Ácidos Sulfônicos/química , Vibrio cholerae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA