RESUMO
Drug-eluting nanoparticles (NPs) administered by an eluting balloon represent a novel tool to prevent restenosis after angioplasty, even if the selection of the suitable drug and biodegradable material is still a matter of debate. Herein, we provide the proof of concept of the use of a novel material obtained by combining the grafting of caffeic acid or resveratrol on a poly(lactide-co-glycolide) backbone (g-CA-PLGA or g-RV-PLGA) and the pleiotropic effects of fluvastatin chosen because of its low lipophilic profile which is challenging for the encapsulation in NPs and delivery to the artery wall cells. NPs made of such materials are biocompatible with macrophages, human smooth muscle cells (SMCs), and endothelial cells (ECs). Their cellular uptake is demonstrated and quantified by confocal microscopy using fluorescent NPs, while their distribution in the cytoplasm is verified by TEM images using NPs stained with an Ag-PVP probe appositely synthetized. g-CA-PLGA assures the best control of the FLV release from NP sizing around 180 nm and the faster SMC uptake, as demonstrated by confocal analyses. Interestingly and surprisingly, g-CA-PLGA improves the FLV efficacy to inhibit the SMC migration, without altering its effects on EC proliferation and migration. The improved trophism of NPs toward SMCs, combined with the excellent biocompatibility and low modification of the microenvironment pH upon polymer degradation, makes g-CA-PLGA a suitable material for the design of drug-eluting balloons.
Assuntos
Nanopartículas , Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico , Fluvastatina , Hiperplasia , Células Endoteliais , Portadores de FármacosRESUMO
BACKGROUND: Assessment of hepatic steatosis (HS) before transplantation requires the pathologist to read a graft biopsy. A simple method based on the evaluation of images from tissue samples with a smartphone could expedite and facilitate the liver selection. This study aims to assess the degree of HS by analysing photographic images from liver needle biopsy samples. METHODS: Thirty-three biopsy-images were acquired with a smartphone. Image processing was carried out using ImageJ: background subtraction, conversion to HSB colour space, segmentation of the biopsy area, and evaluation of statistical features of Hue, Saturation, Brightness, Red, Green, and Blue channels on the biopsy area. After feature extraction, correlations were made with gold standard HS percentage assessed at two levels (frozen-section vs glass-slide). Sensitivity, specificity, and accuracy were calculated for each feature. RESULTS: Correlations were found for H, S, R. The sensitivity, specificity, and accuracy of the final classifier based on the K* algorithm were 94%, 92%, 94%. LIMITATIONS: Accuracy assessment was performed considering macrovesicular steatosis on specimens with mostly < 30% HS. CONCLUSIONS: The steatosis assessment based on needle biopsy images, proved to be an effective and promising method. Deep learning approaches could also be experimented with a larger set of images.
Assuntos
Fígado Gorduroso , Transplante de Fígado , Biópsia , Biópsia por Agulha , Fígado Gorduroso/diagnóstico , Humanos , Fígado/patologia , Transplante de Fígado/métodos , Doadores VivosRESUMO
Nanotechnology and nanoparticles (NPs) are at the forefront of modern research, particularly in the case of healthcare therapeutic applications. Polymeric NPs, specifically, hold high promise for these purposes, including towards oral diseases. Careful optimisation of the production of polymeric NPs, however, is required to generate a product which can be easily translated from a laboratory environment to the actual clinical usage. Indeed, considerations such as biocompatibility, biodistribution, and biodegradability are paramount. Moreover, a pre-clinical assessment in adequate in vitro, ex vivo or in vivo model is also required. Last but not least, considerations for the scale-up are also important, together with an appropriate clinical testing pathway. This review aims to eviscerate the above topics, sourcing at examples from the recent literature to put in context the current most burdening oral diseases and the most promising polymeric NPs which would be suitable against them.
Assuntos
Doenças da Boca , Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Animais , HumanosRESUMO
Conventional drug solubilization strategies limit the understanding of the full potential of poorly water-soluble drugs during drug screening. Here, we propose a screening approach in which poorly water-soluble drugs are entrapped in poly(2-(methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylaminoethyl methacryate) (PMPC-PDPA) polymersomes (POs) to enhance drug solubility and facilitate intracellular delivery. By using a human pediatric glioma cell model, we demonstrated that PMPC-PDPA POs mediated intracellular delivery of cytotoxic and epigenetic drugs by receptor-mediated endocytosis. Additionally, when delivered in combination, drug-loaded PMPC-PDPA POs triggered both an enhanced drug efficacy and synergy compared to that of a conventional combinatorial screening. Hence, our comprehensive synergy analysis illustrates that our screening methodology, in which PMPC-PDPA POs are used for intracellular codelivery of drugs, allows us to identify potent synergistic profiles of anticancer drugs.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Portadores de Fármacos/química , Glioma/tratamento farmacológico , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Endocitose , Glioma/patologia , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Fosforilcolina/química , SolubilidadeRESUMO
Spatiotemporal control of drug delivery is important for a number of medical applications and may be achieved using polymersome nanoparticles (PMs). Wnt signalling is a molecular pathway activated in various physiological processes, including bone repair, that requires precise control of activation. Here, we hypothesise that PMs can be stably loaded with a small molecule Wnt agonist, 6-bromoindirubin-3'-oxime (BIO), and activate Wnt signalling promoting the osteogenic differentiation in human primary bone marrow stromal cells (BMSCs). We showed that BIO-PMs induced a 40% increase in Wnt signaling activation in reporter cell lines without cytotoxicity induced by free BIO. BMSCs incubated with BIO-PMs showed a significant up-regulation of the Wnt target gene AXIN2 (14⯱â¯4 fold increase, Pâ¯<â¯0.001) and a prolonged activation of the osteogenic gene RUNX2. We conclude that BIO-PMs could represent an innovative approach for the controlled activation of Wnt signaling for promoting bone regeneration after fracture.
Assuntos
Nanopartículas/química , Proteína Axina/genética , Proteína Axina/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Indóis/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Oximas/farmacologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismoRESUMO
Activation of the canonical Wnt signaling pathway is an attractive anabolic therapeutic strategy for bone. Emerging data suggest that activation of the Wnt signaling pathway promotes bone mineral accrual in osteoporotic patients. The effect of Wnt stimulation in fracture healing is less clear as Wnt signaling has both stimulatory and inhibitory effects on osteogenesis. Here, we tested the hypothesis that transient Wnt stimulation promotes the expansion and osteogenesis of a Wnt-responsive stem cell population present in human bone marrow. Bone marrow mononuclear cells (BMMNCs) were isolated from patients undergoing hip arthroplasty and exposed to Wnt3A protein. The effect of Wnt pathway stimulation was determined by measuring the frequency of stem cells within the BMMNC populations by fluorescence-activated cell sorting and colony forming unit fibroblast (CFU-F) assays, before determining their osteogenic capacity in in vitro differentiation experiments. We found that putative skeletal stem cells in BMMNC isolates exhibited elevated Wnt pathway activity compared with the population as whole. Wnt stimulation resulted in an increase in the frequency of skeletal stem cells marked by the STRO-1(bright) /Glycophorin A(-) phenotype. Osteogenesis was elevated in stromal cell populations arising from BMMNCs transiently stimulated by Wnt3A protein, but sustained stimulation inhibited osteogenesis in a concentration-dependent manner. These results demonstrate that Wnt stimulation could be used as a therapeutic approach by transient targeting of stem cell populations during early fracture healing, but that inappropriate stimulation may prevent osteogenesis.
Assuntos
Células da Medula Óssea/metabolismo , Leucócitos Mononucleares/metabolismo , Osteogênese , Células-Tronco/metabolismo , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril , Células da Medula Óssea/citologia , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade , Células-Tronco/citologia , Células Estromais/citologia , Células Estromais/metabolismoRESUMO
BACKGROUND: Osteochondral defects significantly affect patients' quality of life and represent challenging tissue lesions, because of the poor regenerative capacity of cartilage. Tissue engineering has long sought to promote cartilage repair, by employing artificial scaffolds to enhance cell capacity to deposit new cartilage. An ideal biomaterial should closely mimic the natural environment of the tissue, to promote scaffold colonization, cell differentiation and the maintenance of a differentiated cellular phenotype. The present study evaluated chitosan scaffolds enriched with D-(+) raffinose in osteochondral defects in rabbits. Cartilage defects were created in distal femurs, both on the condyle and on the trochlea, and were left untreated or received a chitosan scaffold. The animals were sacrificed after 2 or 4 weeks, and samples were analysed microscopically. RESULTS: The retrieved implants were surrounded by a fibrous capsule and contained a noticeable inflammatory infiltrate. No hyaline cartilage was formed in the defects. Although defect closure reached approximately 100% in the control group after 4 weeks, defects did not completely heal when filled with chitosan. In these samples, the lesion contained granulation tissue at 2 weeks, which was then replaced by fibrous connective tissue by week 4. Noteworthy, chitosan never appeared to be integrated in the surrounding cartilage. CONCLUSIONS: In conclusion, the present study highlights the limits of D-(+) raffinose-enriched chitosan for cartilage regeneration and offers useful information for further development of this material for tissue repair.
Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Quitosana/administração & dosagem , Rafinose/administração & dosagem , Alicerces Teciduais , Animais , Doenças das Cartilagens/patologia , Doenças das Cartilagens/cirurgia , Quitosana/química , Masculino , Coelhos , Rafinose/química , Alicerces Teciduais/químicaRESUMO
Recent research has shown that tau protein can be passed to neighboring cells, leading to cellular senescence in the endothelial cells present in the central nervous system (CNS). This discovery could potentially open new doors for testing novel therapeutic compounds that specifically target senescent cells (senolytics) or for identifying new biomarkers that can enable early detection of tauopathies and dementia.
RESUMO
Acoustic manipulation or perturbation of biological soft matter has emerged as a promising clinical treatment for a number of applications within regenerative medicine, ranging from bone fracture repair to neuromodulation. The potential of ultrasound (US) endures in imparting mechanical stimuli that are able to trigger a cascade of molecular signals within unscathed cells. Particularly, low-intensity pulsed ultrasound (LIPUS) has been associated with bio-effects such as activation of specific cellular pathways and alteration of cell morphology and gene expression, the extent of which can be modulated by fine tuning of LIPUS parameters including intensity, frequency and exposure time. Although the molecular mechanisms underlying LIPUS are not yet fully elucidated, a number of studies clearly define the modulation of specific ultrasonic parameters as a means to guide the differentiation of a specific set of stem cells towards adult and fully differentiated cell types. Herein, we outline the applications of LIPUS in regenerative medicine and the in vivo and in vitro studies that have confirmed the unbounded clinical potential of this platform. We highlight the latest developments aimed at investigating the physical and biological mechanisms of action of LIPUS, outlining the most recent efforts in using this technology to aid tissue engineering strategies for repairing tissue or modelling specific diseases. Ultimately, we detail tissue-specific applications harnessing LIPUS stimuli, offering insights over the engineering of new constructs and therapeutic modalities. Overall, we aim to lay the foundation for a deeper understanding of the mechanisms governing LIPUS-based therapy, to inform the development of safer and more effective tissue regeneration strategies in the field of regenerative medicine.
Assuntos
Medicina Regenerativa , Engenharia Tecidual , Ondas Ultrassônicas , Humanos , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Terapia por Ultrassom/métodos , AnimaisRESUMO
[This corrects the article DOI: 10.1021/acscentsci.2c00146.].
RESUMO
Local drug delivery to the esophagus is hampered by rapid transit time and poor permeability of the mucosa. If some strategies aimed to improve the residence time have been proposed, non-invasive approaches to increase the drug penetration in the mucosa have not been described so far. Herein, we designed mucosa-penetrating liposomes to favor the penetration and retention of curcumin (CURC) in the esophagus. A novel mucosa penetrating peptide (MPP), SLENKGP, was selected by Phage Display and conjugated to pegylated liposomes at different PEG and MPP's surface densities. Pegylation assured a long residence time of liposomes (at least 30 min) in the esophagus in vivo, but it did not favor the penetration of CURC in the mucosa. MPP-decorated liposomes instead delivered a significant higher amount of CURC in the mucosa compared to naked pegylated liposomes. Confocal microscopy studies showed that naked pegylated liposomes remain confined in the superficial layers of the mucosa whereas MPP-decorated liposomes penetrate the whole epithelium. In vitro, MPP reduced the interaction of PEG with mucin, meanwhile favoring the paracellular penetration of liposomes across epithelial cell multilayers. In conclusion, pegylated liposomes represent a valid approach to target the esophagus and the surface functionalization with MPP enhances their penetration in the mucosa.
Assuntos
Curcumina , Sistemas de Liberação de Medicamentos , Mucosa Esofágica , Lipossomos , Polietilenoglicóis , Curcumina/administração & dosagem , Curcumina/farmacocinética , Curcumina/química , Polietilenoglicóis/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Mucosa Esofágica/metabolismo , Humanos , Esôfago/metabolismo , Masculino , PermeabilidadeRESUMO
AIMS: The incidence of lung infections is increasing worldwide in individuals suffering from cystic fibrosis and chronic obstructive pulmonary disease. Mycobacterium abscessus is associated with chronic lung deterioration in these populations. The intrinsic resistance of M. abscessus to most conventional antibiotics jeopardizes treatment success rates. To date, no single drug has been developed targeting M. abscessus specifically. The objective of this study was to characterize VOMG, a pyrithione-core drug-like small molecule, as a new compound active against M. abscessus and other pathogens. METHODS: A multi-disciplinary approach including microbiological, chemical, biochemical and transcriptomics procedures was used to validate VOMG as a promising anti-M. abscessus drug candidate. RESULTS: To the authors' knowledge, this is the first study to report the in-vitro and in-vivo bactericidal activity of VOMG against M. abscessus and other pathogens. Besides being active against M. abscessus biofilm, the compound showed a favourable pharmacological (ADME-Tox) profile. Frequency of resistance studies were unable to isolate resistant mutants. VOMG inhibits cell division, particularly the FtsZ enzyme. CONCLUSIONS: VOMG is a new drug-like molecule active against M. abscessus, inhibiting cell division with broad-spectrum activity against other microbial pathogens.
Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium abscessus/efeitos dos fármacos , Antibacterianos/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Biofilmes/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Humanos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Piridinas/farmacologia , CamundongosRESUMO
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
RESUMO
Neurodegenerative diseases (NDs) impose substantial medical and public health burdens on people worldwide and represent one of the major threats to human health. The prevalence of these age-dependent disorders is dramatically increasing over time, a process intrinsically related to a constantly rising percentage of the elderly population in recent years. Among all the NDs, Alzheimer's and Parkinson's are considered the most debilitating as they cause memory and cognitive loss, as well as severely affecting basic physiological conditions such as the ability to move, speak, and breathe. There is an extreme need for new and more effective therapies to counteract these devastating diseases, as the available treatments are only able to slow down the pathogenic process without really stopping or resolving it. This review aims to elucidate the current nanotechnology-based tools representing a future hope for NDs treatment. Noble metal nano-systems, that is, gold and silver nanoparticles (NPs), have indeed unique physicochemical characteristics enabling them to deliver any pharmacological treatment in a more effective way within the central nervous system. This can potentially make NPs a new hope for reversing the actual therapeutic strategy based on slowing down an irreversible process into a more effective and permanent treatment.
RESUMO
Radiotherapy (RT) involves delivering X-ray beams to the tumor site to trigger DNA damage. In this approach, it is fundamental to preserve healthy cells and to confine the X-ray beam only to the malignant cells. The integration of gold nanoparticles (AuNPs) in the X-ray methodology could be considered a powerful tool to improve the efficacy of RT. Indeed, AuNPs have proven to be excellent allies in contrasting tumor pathology upon RT due to their high photoelectric absorption coefficient and unique physiochemical properties. However, an analysis of their physical and morphological reaction to X-ray exposure is necessary to fully understand the AuNPs' behavior upon irradiation before treating the cells, since there are currently no studies on the evaluation of potential NP morphological changes upon specific irradiations. In this work, we synthesized two differently shaped AuNPs adopting two different techniques to achieve either spherical or star-shaped AuNPs. The spherical AuNPs were obtained with the Turkevich-Frens method, while the star-shaped AuNPs (AuNSs) involved a seed-mediated approach. We then characterized all AuNPs with Transmission Electron Microscopy (TEM), Uv-Vis spectroscopy, Dynamic Light Scattering (DLS), zeta potential and Fourier Transform Infrared (FTIR) spectroscopy. The next step involved the treatment of AuNPs with two different doses of X-radiation commonly used in RT, namely 1.8 Gy and 2 Gy, respectively. Following the X-rays' exposure, the AuNPs were further characterized to investigate their possible physicochemical and morphological alterations induced with the X-rays. We found that AuNPs do not undergo any alteration, concluding that they can be safely used in RT treatments. Lastly, the actin rearrangements of THP-1 monocytes treated with AuNPs were also assessed in terms of coherency. This is a key proof to evaluate the possible activation of an immune response, which still represents a big limitation for the clinical translation of NPs.
RESUMO
Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of M. tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new anti-TB agents is the salicylate synthase MbtI, the first enzyme of the mycobacterial siderophore biochemical machinery, absent in human cells. In this work, a set of analogues of 5-(3-cyanophenyl)furan-2-carboxylic acid (I), the most potent MbtI inhibitor identified to date, was synthesized, characterized, and tested to further elucidate the structural requirements for achieving an efficient MbtI inhibition and potent antitubercular activity. The structure-activity relationships (SAR) discussed herein evidenced the importance of the side chain linked to the phenyl moiety to improve the in vitro antimycobacterial activity. In detail, 1f emerged as the most effective analogue against the pathogen, acting without cytotoxicity issues. To deepen the understanding of its mechanism of action, we established a fluorescence-based screening test to quantify the pathogen infectivity within host cells, using MPI-2 murine cells, a robust surrogate for alveolar macrophages. The set-up of the new assay demonstrates significant potential to accelerate the discovery of new anti-TB drugs.
RESUMO
Phenotypic targeting requires the ability of the drug delivery system to discriminate over cell populations expressing a particular receptor combination. Such selectivity control can be achieved using multiplexed-multivalent carriers often decorated with multiple ligands. Here, we demonstrate that the promiscuity of a single ligand can be leveraged to create multiplexed-multivalent carriers achieving phenotypic targeting. We show how the cellular uptake of poly(2-(methacryloyloxy)ethyl phosphorylcholine)-poly(2-(diisopropylamino)ethyl methacry-late) (PMPC-PDPA) polymersomes varies depending on the receptor expression among different cells. We investigate the PMPC-PDPA polymersome insertion at the single chain/receptor level using all-atom molecular modeling. We propose a theoretical statistical mechanics-based model for polymersome-cell association that explicitly considers the interaction of the polymersome with the cell glycocalyx shedding light on its effect on the polymersome binding. We validate our model experimentally and show that the binding energy is a nonlinear function, allowing us to tune the interaction by varying the radius and degree of polymerization. Finally, we show that PMPC-PDPA polymersomes can be used to target monocytes in vivo due to their promiscuous interaction with SRB1, CD36, and CD81.
RESUMO
BACKGROUND: Vaccines against COVID-19 are a powerful tool to control the current SARS-CoV-2 pandemic. A thorough description of their immunogenicity among people living with HIV (PLWHIV) is necessary. We aimed to assess the immunogenicity of the mRNA-1273 vaccine among PLWHIV. METHODS: In this prospective cohort, adult PLWHIV outpatients were enrolled during the Italian vaccination campaign. Enrolment was allowed irrespective of ongoing combination antiretroviral therapy (ART), plasma HIV viral load and CD4+ T cell count. A two-dose regimen of mRNA-1273, with administrations performed 28 days apart, was employed. The primary outcomes were anti-spike (anti-S) antibody titres and neutralising antibody activity, assessed 28 days after completing the vaccination schedule. A convenient sample of individuals not affected by HIV was also collected to serve as control (referred as healthy-donors, HDs). FINDINGS: We enrolled 71 PLWHIV, mostly male (84·5%), with a mean age of 47 years, a median CD4+ T cell count of 747·0 cells per µL and a median HIV viral load <50 copies/mL. COVID-19-experienced PLWHIV displayed higher anti-S antibody titres (p=0·0007) and neutralising antibody activity in sera (p=0·0007) than COVID-19-naïve PLWHIV. When stratified according to CD4+ T cell count (<350 cells/µL, 350-500 cells/µL, >500 cells/µL), anti-S antibody titres (6/71, median 2173 U/mL [IQR 987-4109]; 7/71, 5763 IU/mL [IQR 4801->12500]; 58/71, 2449 U/mL [IQR 1524-5704]) were not lower to those observed among HDs (10, median 1425 U/mL [IQR 599-6131]). In addition, neutralising antibody activity, stratified according to the CD4+ T cell count (6/71, median 1314 [IQR 606-2477]; 7/71, 3329 IU/mL [IQR 1905-10508]; 58/71, 1227 U/mL [IQR 761-3032]), was like those displayed by HDs (10, median 2112 U/mL [IQR 719-8889]). INTERPRETATION: In our cohort of PLWHIV with well-controlled ART, stable viral suppression and robust CD4+ T cell count, inoculation with mRNA-1273 vaccine given 4 weeks apart produced detectable humoral immune response, similar to individuals without HIV infection, supporting vaccination in PLWHIV. FUNDING: This study was partially supported by Italian Ministry of Health Ricerca Corrente 2021, by Intesa San Paolo COVID-19 emergency 2020 funds, and by Fondazione Cariplo Grant (INNATE-CoV).
RESUMO
Moving towards a real mass vaccination in the context of COVID-19, healthcare professionals are required to face some criticisms due to limited data on the stability of a mRNA-based vaccine (Pfizer-BioNTech COVID-19 Vaccine in the US or Comirnaty in EU) as a dose in a 1 mL-syringe. The stability of the lipid nanoparticles and the encapsulated mRNA was evaluated in a "real-life" scenario. Specifically, we investigated the effects of different storing materials (e.g., syringes vs. glass vials), as well as of temperature and mechanical stress on nucleic acid integrity, number, and particle size distribution of lipid nanoparticles. After 5 h in the syringe, lipid nanoparticles maintained the regular round shape, and the hydrodynamic diameter ranged between 80 and 100 nm with a relatively narrow polydispersity (<0.2). Samples were stable independently of syringe materials and storage conditions. Only strong mechanical stress (e.g., shaking) caused massive aggregation of lipid nanoparticles and mRNA degradation. These proof-of-concept experiments support the hypothesis that vaccine doses can be safely prepared in a dedicated area using an aseptic technique and transferred without affecting their stability.
RESUMO
From viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon. Overall, range selectivity represents a potential path to increase the targeting selectivity of multivalent constructs.