RESUMO
The results of the investigation of the reflective characteristics of multilayer mirrors based on Ru/Y are presented. Reflection coefficients at the level of 38.5% at an operating wavelength of 9.4 nm. It is shown that the deposition of B4C barrier layers onto Y layers makes it possible to significantly increase the reflection coefficient compared to structures without barrier layers. A reflectance of 54% was obtained for mirrors optimized for 11.4 nm, which is close to the theoretical limit for these materials.
RESUMO
High-quality metrology with synchrotron radiation requires in particular a very high spectral purity of the incident beam. This is usually achieved by a set of transmission filters with suitable absorption edges to suppress high-order radiation of the monochromator. The at-wavelength metrology station at a BESSY-II bending-magnet collimated plane-grating monochromator (c-PGM) beamline has recently commissioned a high-order suppression system (HiOS) based on four reflections from mirrors which can be inserted into the beam path. Two pairs of mirrors are aligned parallel so as not to disturb the original beam path and are rotated clockwise and counter-clockwise. Three sets of coatings are available for the different energy ranges and the incidence angle is freely tunable to find the optimum figure of merit for maximum suppression at maximum transmission for each photon energy required. Measured performance results of the HiOS for the EUV and XUV range are compared with simulations, and applications are discussed.
RESUMO
Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170â mm, the new GTM-24 will have the capacity for 600â mm (24â inch) gratings with groove densities between 50â linesâ mm-1 and 1200â linesâ mm-1. A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500â mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.
RESUMO
A comparative study was carried out of the structure and reflection performance of four types of multilayer mirror for extreme ultraviolet lithography at 11.2 nm; these were a pure Mo/Be structure and three Mo/Be-based structures with thin B4C, C and Si interlayers. It was demonstrated that Mo/Be mirrors show maximum reflectance at normal incidence, while maximum structural perfection is shown by Mo/Be/Si mirrors. The introduction of B4C and C layers into the structure increases the interlayer roughness and reduces the sharpness of the interfaces, adversely affecting the target coating characteristics. Results are presented for studies using four techniques: X-ray reflectometry, small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy.
RESUMO
A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200â linesâ mm(-1)) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000â eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4â kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here.
RESUMO
For photon energies of 1 - 5 keV, blazed gratings with multilayer coating are ideally suited for the suppression of stray and higher orders light in grating monochromators. We developed and characterized a blazed 2000 lines/mm grating coated with a 20 period Cr/C- multilayer. The multilayer d-spacing of 7.3 nm has been adapted to the line distance of 500 nm and the blaze angle of 0.84° in order to provide highest efficiency in the photon energy range between 1.5 keV and 3 keV. Efficiency of the multilayer grating as well as the reflectance of a witness multilayer which were coated simultaneously have been measured. An efficiency of 35% was measured at 2 keV while a maximum efficiency of 55% was achieved at 4 keV. In addition, a strong suppression of higher orders was observed which makes blazed multilayer gratings a favorable dispersing element also for the low X-ray energy range.
RESUMO
We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.
RESUMO
We introduce a novel approach that addresses the probing of interfacial structural phenomena in layered nano-structured films. The approach combines resonant soft x-ray reflection spectroscopy at grazing incidence near the "critical angle" with angular dependent reflection at energies around the respective absorption edges. Dynamic scattering is considered to determine the effective electron density and hence chemically resolved atomic profile across the structure based on simultaneous data analysis. We demonstrate application of the developed technique on the layered model structure C (20 Å)/B (40 Å)/Si (300 Å)/W (10 Å)/substrate. We precisely quantify atomic migration across the interfaces, a few percent of chemical changes of materials and the presence of impurities from top to the buried interfaces. The results obtained reveal the sensitivity of the approach towards resolving the compositional differences up to a few atomic percent. The developed approach enables the reconstruction of a highly spatio-chemically resolved interfacial map of complex nano-scaled interfaces with technical relevance to many emerging applied research fields.
RESUMO
Using numerical optimization algorithm, non-periodic Mo/Si, Mo/Be, and Ni/C broad angular multilayer analyzers have been designed. At the wavelength of 13 nm and the angular range of 45~49 degrees , the Mo/Si and Mo/Be multilayer can provide the plateau s-reflectivity of 65% and 45%, respectively. At 5.7 nm, the s-reflectivity of Ni/C multilayer is 16% in the 44~46 degrees range. The non-periodic Mo/Si broad angular multilayer was also fabricated using DC magnetron sputtering, and characterized using the soft X-ray polarimeter at BESSY. The s-reflectivity is higher than 45.6% over the angular range of 45~49 degrees at 13 nm, where, the degree of polarization is more than 99.98%.
RESUMO
A new Optics Beamline coupled to a versatile UHV reflectometer is successfully operating at BESSY-II. It is used to carry out at-wavelength characterization and calibration of in-house produced gratings and novel nano-optical devices as well as mirrors and multilayer systems in the UV and XUV spectral region. This paper presents most recent commissioning data of the beamline and shows their correlation with initial beamline design calculations. Special attention is paid to beamline key parameters which determine the quality of the measurements such as high-order suppression and stray light behavior. The facility is open to user operation.
RESUMO
The root canals of 150 extracted mandibular incisors were prepared to ISO 30 using eight different automated devices and hand instruments. The automated devices investigated were: Endoplaner, Excalibur, Ultrasonics (Piezon Master 400) with H2O2 (5%), or NaOCl (1%) as irrigants, Giromatic, Intra-Endo 3-LDSY, Canal Finder System, Canal Leader 2000, and Endolift. Hand instrumentation was performed using reamers and Hedstroem files. Fifteen teeth were instrumented with each device, cracked longitudinally, and investigated under the scanning electron microscope using five category scoring systems based on reference photographs for debris and smear layer. No preparation system or technique resulted in complete removal of smear layer and debris. The ultrasonic unit performed best followed by the Canal Leader 2000 and hand instrumentation, whereas the use of the Giromatic, the Endolift, the Canal Finder System, and the Intra-Endo-3-LDSY-handpiece resulted in insufficiently cleaned root canal walls.
Assuntos
Preparo de Canal Radicular/instrumentação , Equipamentos Odontológicos de Alta Rotação , Cavidade Pulpar/patologia , Cavidade Pulpar/ultraestrutura , Estudos de Avaliação como Assunto , Humanos , Microscopia Eletrônica de Varredura , Variações Dependentes do Observador , Preparo de Canal Radicular/métodos , Camada de Esfregaço , Estatísticas não Paramétricas , Terapia por Ultrassom/instrumentaçãoRESUMO
The conducting interface of LaAlO3/SrTiO3 heterostructures has been studied by hard x-ray photoelectron spectroscopy. From the Ti 2p signal and its angle dependence we derive that the thickness of the electron gas is much smaller than the probing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO3 overlayers. Our results point to an electronic reconstruction in the LaAlO3 overlayer as the driving mechanism for the conducting interface and corroborate the recent interpretation of the superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless type.