Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 307(9): E800-12, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25205820

RESUMO

Bordetella pertussis toxin (PTx), also known as islet-activating protein, induces insulin secretion by ADP-ribosylation of inhibitory G proteins. PTx-induced insulin secretion may result either from inactivation of Gα(o) proteins or from combined inactivation of Gα(o), Gα(i1), Gα(i2), and Gα(i3) isoforms. However, the specific role of Gα(i2) in pancreatic ß-cells still remains unknown. In global (Gα(i2)(-/-)) and ß-cell-specific (Gα(i2)(ßcko)) gene-targeted Gα(i2) mouse models, we studied glucose homeostasis and islet functions. Insulin secretion experiments and intracellular Ca²âº measurements were used to characterize Gα(i2) function in vitro. Gα(i2)(-/-) and Gα(i2)(ßcko) mice showed an unexpected metabolic phenotype, i.e., significantly lower plasma insulin levels upon intraperitoneal glucose challenge in Gα(i2)(-/-) and Gα(i2)(ßcko) mice, whereas plasma glucose concentrations were unchanged in Gα(i2)(-/-) but significantly increased in Gα(i2)(ßcko) mice. These findings indicate a novel albeit unexpected role for Gα(i2) in the expression, turnover, and/or release of insulin from islets. Detection of insulin secretion in isolated islets did not show differences in response to high (16 mM) glucose concentrations between control and ß-cell-specific Gα(i2)-deficient mice. In contrast, the two- to threefold increase in insulin secretion evoked by L-arginine or L-ornithine (in the presence of 16 mM glucose) was significantly reduced in islets lacking Gα(i2). In accord with a reduced level of insulin secretion, intracellular calcium concentrations induced by the agonistic amino acid L-arginine did not reach control levels in ß-cells. The presented analysis of gene-targeted mice provides novel insights in the role of ß-cell Gα(i2) showing that amino acid-induced insulin-release depends on Gα(i2).


Assuntos
Arginina/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/agonistas , Hiperglicemia/prevenção & controle , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ornitina/metabolismo , Regulação para Cima , Animais , Glicemia/análise , Sinalização do Cálcio , Cruzamentos Genéticos , Regulação para Baixo , Imunofluorescência , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Hipoglicemia/sangue , Hipoglicemia/metabolismo , Hipoglicemia/prevenção & controle , Insulina/sangue , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ornitina/sangue , Organismos Livres de Patógenos Específicos , Técnicas de Cultura de Tecidos
2.
Front Immunol ; 15: 1360698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979428

RESUMO

Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Camundongos , Vírus da Influenza A/imunologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Feminino , Camundongos Endogâmicos C57BL , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Modelos Animais de Doenças
3.
Front Cell Infect Microbiol ; 13: 1264983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965261

RESUMO

The recent COVID-19 pandemic again highlighted the urgent need for broad-spectrum antivirals, both for therapeutic use in acute viral infection and for pandemic preparedness in general. The targeting of host cell factors hijacked by viruses during their replication cycle presents one possible strategy for development of broad-spectrum antivirals. By inhibiting the Raf/MEK/ERK signaling pathway, a central kinase cascade of eukaryotic cells, which is being exploited by numerous viruses of different virus phyla, the small-molecule MEK inhibitor zapnometinib has the potential to address this need. We here performed a side-by-side comparison of the antiviral efficacy of zapnometinib against IAV and SARS-CoV-2 to determine the concentration leading to 50% of its effect on the virus (EC50) and the concentration leading to 50% reduction of ERK phosphorylation (IC50) in a comparable manner, using the same experimental conditions. Our results show that the EC50 value and IC50 value of zapnometinib are indeed lower for IAV compared to SARS-CoV-2 using one representative strain for each. The results suggest that IAV's replication has a stronger dependency on an active Raf/MEK/ERK pathway and, thus, that IAV is more susceptible to treatment with zapnometinib than SARS-CoV-2. With zapnometinib's favorable outcome in a recent phase II clinical trial in hospitalized COVID-19 patients, the present results are even more promising for an upcoming phase II clinical trial in severe influenza virus infection.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Humanos , Sistema de Sinalização das MAP Quinases , SARS-CoV-2 , Influenza Humana/tratamento farmacológico , Pandemias , Replicação Viral , Transdução de Sinais , Antivirais/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno
4.
Front Pharmacol ; 13: 893635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784712

RESUMO

The mitogen-activated protein kinase (MEK) inhibitor zapnometinib is in development to treat acute viral infections like COVID-19 and influenza. While the antiviral efficacy of zapnometinib is well documented, further data on target engagement/pharmacodynamics (PD) and pharmacokinetics (PK) are needed. Here, we report zapnometinib PK and PD parameters in mice, hamsters, dogs, and healthy human volunteers. Mice received 25 mg/kg/day zapnometinib (12.5 mg/kg p. o. twice daily, 8 h interval). Syrian hamsters received 30 mg/kg (15 mg/kg twice daily) or 60 mg/kg/day once daily. Beagle dogs were administered 300 mg/kg/day, and healthy human volunteers were administered 100, 300, 600 and 900 mg zapnometinib (once daily p. o.). Regardless of species or formulation, zapnometinib maximum plasma concentration (Cmax) was reached between 2-4 h after administration with an elimination half-life of 4-5 h in dogs, 8 h in mice or hamsters and 19 h in human subjects. Doses were sufficient to cause up to 80% MEK inhibition. Across all species approximately 10 µg/ml zapnometinib was appropriate to inhibit 50% of peripheral blood mononuclear cells (PBMC) MEK activity. In mice, a 50%-80% reduction of MEK activity was sufficient to reduce influenza virus titer in the lungs by more than 90%. In general, while >50% MEK inhibition was reached in vivo at most doses, 80% inhibition in PBMCs required significantly higher doses and appeared to be the practical maximal level obtained in vivo. However, the period of reduced phosphorylated extracellular-signal regulated kinase (pERK), a measure of MEK inhibition, was maintained even after elimination of zapnometinib from plasma, suggesting a sustained effect on MEK consistent with regulatory effects or a slow off-rate. These data suggest a target plasma Cmax of at least 10 µg/ml zapnometinib in further clinical studies.

5.
Mol Metab ; 40: 101029, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32480042

RESUMO

OBJECTIVES: Typically, obesity results from an inappropriate balance between energy uptake from nutrient consumption and burning of calories, which leads to a pathological increase in fat mass. Obesity is a major cause of insulin resistance and diabetes. Inhibitory G proteins (Gαi) form a subfamily that is involved in the regulation of adipose tissue function. Among the three Gαi members, i.e. Gαi1, Gαi2, Gαi3, the Gαi2, protein is predominantly expressed in adipose tissue. However, the functions of the Gαi2 isoform in adipose tissue and its impact on the development of obesity are poorly understood. METHODS: By using AdipoqCreERT2 mice, we generated adipocyte-specific Gnai2-deficient mice to study Gαi2 function, specifically in white and brown adipocytes. These mice were fed either a control diet (CD) or a high fat diet (HFD). Mice were examined for obesity development, insulin resistance and glucose intolerance. We examined adipocyte morphology and the development of inflammation in the white adipose tissue. Finally, intracellular cAMP levels as an indicator of Gαi signaling and glycerol release as an indicator of lipolysis rates were measured to verify the impact of Gαi2 on the signaling pathway in brown and white adipocytes. RESULTS: An adipocyte-specific deficiency of Gαi2 significantly reduced diet-induced obesity, leading to decreased fat masses, smaller adipocytes and decreased inflammation in the white adipose tissue relative to littermate controls. Concurrently, oxygen consumption of brown adipocytes and in vivo measured energy expenditure were significantly enhanced. In addition, glucose tolerance and insulin sensitivity of HFD-fed adipocyte-specific Gnai2-deficient mice were improved compared to the respective controls. In the absence of Gαi2, adrenergic stimulation of intracellular adipocyte cAMP levels was increased, which correlated with increased lipolysis and energy expenditure. CONCLUSION: We conclude that adipocyte Gαi2 is a major regulator of adipocyte lipid content in diet-induced obesity by inhibiting adipocyte lipolysis in a cAMP-dependent manner resulting in increased energy expenditure.


Assuntos
Tecido Adiposo/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Obesidade/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA