RESUMO
CD3 bispecific antibody (CD3 bsAb) therapy is clinically approved for refractory hematological malignancies, but responses in solid tumors have been limited so far. One of the main hurdles in solid tumors is the lack of sufficient T-cell infiltrate. Here, we show that pre-treatment vaccination, even when composed of tumor-unrelated antigens, induces CXCR3-mediated T-cell influx in immunologically 'cold' tumor models in male mice. In the absence of CD3 bsAb, the infiltrate is confined to the tumor invasive margin, whereas subsequent CD3 bsAb administration induces infiltration of activated effector CD8 T cells into the tumor cell nests. This combination therapy installs a broadly inflamed Th1-type tumor microenvironment, resulting in effective tumor eradication. Multiple vaccination formulations, including synthetic long peptides and viruses, empower CD3 bsAb therapy. Our results imply that eliciting tumor infiltration with vaccine-induced tumor-(un)related T cells can greatly improve the efficacy of CD3 bsAbs in solid tumors.
Assuntos
Anticorpos Biespecíficos , Neoplasias , Vacinas , Masculino , Animais , Camundongos , Linfócitos T , Complexo CD3 , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígenos de Neoplasias , Microambiente TumoralRESUMO
Total tumor clearance through immunotherapy is associated with a fully coordinated innate and adaptive immune response, but knowledge on the exact contribution of each immune cell subset is limited. We show that therapy-induced intratumoral CD8+ T cells recruited and skewed late-stage activated M1-like macrophages, which were critical for effective tumor control in two different murine models of cancer immunotherapy. The activated CD8+ T cells summon these macrophages into the tumor and their close vicinity via CCR5 signaling. Exposure of non-polarized macrophages to activated T cell supernatant and tumor lysate recapitulates the late-stage activated and tumoricidal phenotype in vitro. The transcriptomic signature of these macrophages is also detected in a similar macrophage population present in human tumors and coincides with clinical response to immune checkpoint inhibitors. The requirement of a functional co-operation between CD8+ T cells and effector macrophages for effective immunotherapy gives warning to combinations with broad macrophage-targeting strategies.
Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Macrófagos , Animais , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Camundongos , Humanos , Macrófagos/imunologia , Receptores CCR5/metabolismo , Receptores CCR5/genética , Camundongos Endogâmicos C57BL , Ativação de Macrófagos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ativação Linfocitária/imunologia , Feminino , Microambiente Tumoral/imunologiaRESUMO
The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.