Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nat Genet ; 28(3): 241-9, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11431694

RESUMO

We describe the successful application of a modified gene-trap approach, the secretory trap, to systematically analyze the functions in vivo of large numbers of genes encoding secreted and membrane proteins. Secretory-trap insertions in embryonic stem cells can be transmitted to the germ line of mice with high efficiency and effectively mutate the target gene. Of 60 insertions analyzed in mice, one-third cause recessive lethal phenotypes affecting various stages of embryonic and postnatal development. Thus, secretory-trap mutagenesis can be used for a genome-wide functional analysis of cell signaling pathways that are critical for normal mammalian development and physiology.


Assuntos
Proteínas de Membrana/genética , Camundongos/genética , Biologia Molecular/métodos , Proteínas/metabolismo , Animais , Blastocisto/citologia , Cruzamento , Genes Letais , Vetores Genéticos , Genótipo , Mutagênese Insercional , Fenótipo , Reação em Cadeia da Polimerase , Seleção Genética , Sitios de Sequências Rotuladas , Células-Tronco/citologia
2.
Dev Biol ; 310(2): 388-400, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17888899

RESUMO

The chick limb bud has been used as a model system for studying pattern formation and tissue development for more than 50 years. However, the lineal relationships among the different cell types and the migrational boundaries of individual cells within the limb mesenchyme have not been explored. We have used a retroviral lineage analysis system to track the fate of single limb bud mesenchymal cells at different times in early limb development. We find that progenitor cells labeled at stage 19-22 can give rise to multiple cell types including clones containing cells of all five of the major lateral plate mesoderm-derived tissues (cartilage, perichondrium, tendon, muscle connective tissue, and dermis). There is a bias, however, such that clones are more likely to contain the cell types of spatially adjacent tissues such as cartilage/perichondrium and tendon/muscle connective tissue. It has been recently proposed that distinct proximodistal segments are established early in limb development; however our analysis suggests that there is not a strict barrier to cellular migration along the proximodistal axis in the early stage 19-22 limb buds. Finally, our data indicate the presence of a dorsal/ventral boundary established by stage 16 that is inhibitory to cellular mixing. This boundary is demarcated by the expression of the LIM-homeodomain factor lmx1b.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Botões de Extremidades/embriologia , Animais , Embrião de Galinha , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM , Botões de Extremidades/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo
3.
Nature ; 410(6825): 174-9, 2001 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11242070

RESUMO

The search to understand the mechanisms regulating brain wiring has relied on biochemical purification approaches in vertebrates and genetic approaches in invertebrates to identify molecular cues and receptors for axon guidance. Here we describe a phenotype-based gene-trap screen in mice designed for the large-scale identification of genes controlling the formation of the trillions of connections in the mammalian brain. The method incorporates an axonal marker, which helps to identify cell-autonomous mechanisms in axon guidance, and has generated a resource of mouse lines with striking patterns of axonal labelling, which facilitates analysis of the normal wiring diagram of the brain. Studies of two of these mouse lines have identified an in vivo guidance function for a vertebrate transmembrane semaphorin, Sema6A, and have helped re-evaluate that of the Eph receptor EphA4.


Assuntos
Axônios/fisiologia , Encéfalo/fisiologia , Técnicas Genéticas , Proteínas do Tecido Nervoso/fisiologia , Células Receptoras Sensoriais/fisiologia , Fosfatase Alcalina/genética , Animais , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/enzimologia , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Movimento Celular , Células Cultivadas , Feminino , Proteínas Fetais/genética , Proteínas Fetais/fisiologia , Proteínas Ligadas por GPI , Vetores Genéticos , Humanos , Isoenzimas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas do Tecido Nervoso/genética , Vias Neurais , Neurônios/fisiologia , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/fisiologia , Receptor EphA4 , Ribossomos/genética , Semaforinas , Tálamo/anormalidades , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA