Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gynecol Oncol ; 178: 69-79, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806229

RESUMO

OBJECTIVE: Assess if MEK inhibitor blockade of RAS-ERK pathway adaptive response in high grade serous ovarian cancers (HGSOC) improves platinum sensitivity. METHODS: Three HGSOC cell lines and three patient derived organoid (PDOs) samples from ascites of platinum resistant HGSOC patients were collected. Cell lines and PDOs were exposed to carboplatin and MEK inhibitors cobimetinib or trametinib. Cytotoxic effects of MEK inhibitors alone or combined with carboplatin were established. Western blots demonstrated RAS-ERK pathway blockage after MEK inhibitor treatment. RNA sequencing assessed gene expression after MEK inhibitor treatment. Cell line NF1 gene knockdown was performed with corresponding chemosensitivity levels. RESULTS: High carboplatin IC50 levels indicated platinum resistance in cell lines and PDOs. Cobimetinib induced cytotoxicity in cell lines and PDOs, while trametinib was less effective. Western blot confirmed MEK-ERK pathway blockage at minimal concentrations of MEK inhibitors in cell lines and PDOs. Phosphorylated-ERK levels of untreated cells indicated higher levels of RAS-ERK pathway activation in OVSAHO and OVCAR7 compared to OVCAR3. OVSAHO harbors a NF1 mutation and had highest levels of RAS-ERK activation. Cotreatment with carboplatin and MEK inhibitors showed varying synergistic cytotoxic effects at different combinations. Synergistic effect was most prominent in the OVSAHO carboplatin and cobimetinib combination. RNA sequencing identified downregulation of c-MYC and FOXM1 gene expression after MEK inhibitor treatment. NF1 gene knockdown showed an acquired increased IC50 compared to parental cells. CONCLUSION: MEK inhibitors block RAS-ERK pathways in platinum resistant HGSOC cells and PDOs. MEK inhibitors with carboplatin have select synergistic effects which may indicate a strategy to improve platinum sensitivity.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno
2.
Mol Ecol ; 28(3): 528-543, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30375061

RESUMO

Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic-distance-dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12-ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.


Assuntos
Biodiversidade , Biota , Tamanho Corporal , Floresta Úmida , Clima Tropical , Animais , Bactérias , Código de Barras de DNA Taxonômico , Cadeia Alimentar , Guiana Francesa , Fungos , Plantas , Microbiologia do Solo
3.
Ecol Lett ; 21(11): 1660-1669, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30152092

RESUMO

Investigating how trophic interactions influence the ß-diversity of meta-communities is of paramount importance to understanding the processes shaping biodiversity distribution. Here, we apply a statistical method for inferring the strength of spatial dependencies between pairs of species groups. Using simulated community data generated from a multi-trophic model, we showed that this method can approximate biotic interactions in multi-trophic communities based on ß-diversity patterns across groups. When applied to soil multi-trophic communities along an elevational gradient in the French Alps, we found that fungi make a major contribution to the structuring of ß-diversity across trophic groups. We also demonstrated that there were strong spatial dependencies between groups known to interact specifically (e.g. plant-symbiotic fungi, bacteria-nematodes) and that the influence of environment was less important than previously reported in the literature. Our method paves the way for a better understanding and mapping of multi-trophic communities through space and time.


Assuntos
Biodiversidade , Fungos , Bactérias , Solo , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA