Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Annu Rev Genet ; 56: 145-164, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35977408

RESUMO

Various stem cells in the body are tasked with maintaining tissue homeostasis throughout the life of an organism and thus must be resilient to intrinsic and extrinsic challenges such as infection and injury. Crucial to these challenges is genome maintenance because a high mutational load and persistent DNA lesions impact the production of essential gene products at proper levels and compromise optimal stem cell renewal and differentiation. Genome maintenance requires a robust and well-regulated DNA damage response suited to maintaining specific niches and tissues. In this review, we explore the similarities and differences between diverse stem cell types derived from (or preceding) all germ layers, including extraembryonic tissues. These cells utilize different strategies, including implementation of robust repair mechanisms, modulation of cell cycle checkpoints best suited to eliminating compromised cells, minimization of cell divisions, and differentiation in response to excessive damage.


Assuntos
Mamíferos , Células-Tronco , Animais , Diferenciação Celular/genética , Camadas Germinativas , Mutação
2.
Cell ; 157(6): 1257-1261, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906145

RESUMO

Germ cells are the ultimate stem cells, and reports of their in vitro derivation generate excitement due to potential applications in reproductive medicine. To date, there is no firm evidence that meiosis, the hallmark of gametogenesis, can be faithfully replicated outside of the gonad. We propose benchmarks for evaluating in vitro derivation of germ cells, facilitating realization of their potential.


Assuntos
Técnicas Citológicas/normas , Gametogênese , Células Germinativas/citologia , Meiose , Células-Tronco/citologia , Feminino , Humanos , Masculino
3.
Genes Dev ; 34(23-24): 1637-1649, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184219

RESUMO

Germ cells specified during fetal development form the foundation of the mammalian germline. These primordial germ cells (PGCs) undergo rapid proliferation, yet the germline is highly refractory to mutation accumulation compared with somatic cells. Importantly, while the presence of endogenous or exogenous DNA damage has the potential to impact PGCs, there is little known about how these cells respond to stressors. To better understand the DNA damage response (DDR) in these cells, we exposed pregnant mice to ionizing radiation (IR) at specific gestational time points and assessed the DDR in PGCs. Our results show that PGCs prior to sex determination lack a G1 cell cycle checkpoint. Additionally, the response to IR-induced DNA damage differs between female and male PGCs post-sex determination. IR of female PGCs caused uncoupling of germ cell differentiation and meiotic initiation, while male PGCs exhibited repression of piRNA metabolism and transposon derepression. We also used whole-genome single-cell DNA sequencing to reveal that genetic rescue of DNA repair-deficient germ cells (Fancm-/- ) leads to increased mutation incidence and biases. Importantly, our work uncovers novel insights into how PGCs exposed to DNA damage can become developmentally defective, leaving only those genetically fit cells to establish the adult germline.


Assuntos
Dano ao DNA , DNA/efeitos da radiação , Células Germinativas Embrionárias/efeitos da radiação , Células Germinativas/efeitos da radiação , Mutação/genética , Radiação Ionizante , Animais , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Elementos de DNA Transponíveis/efeitos da radiação , Células Germinativas Embrionárias/citologia , Feminino , Masculino , Meiose/genética , Meiose/efeitos da radiação , Camundongos , Oócitos/citologia , Oócitos/efeitos da radiação , Gravidez , RNA Interferente Pequeno/metabolismo , Fatores Sexuais
4.
Trends Genet ; 40(4): 326-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177041

RESUMO

Meiosis is essential for gamete production in all sexually reproducing organisms. It entails two successive cell divisions without DNA replication, producing haploid cells from diploid ones. This process involves complex morphological and molecular differentiation that varies across species and between sexes. Specialized genomic events like meiotic recombination and chromosome segregation are tightly regulated, including preparation for post-meiotic development. Research in model organisms, notably yeast, has shed light on the genetic and molecular aspects of meiosis and its regulation. Although mammalian meiosis research faces challenges, particularly in replicating gametogenesis in vitro, advances in genetic and genomic technologies are providing mechanistic insights. Here we review the genetics and molecular biology of meiotic gene expression control, focusing on mammals.


Assuntos
Meiose , Saccharomyces cerevisiae , Animais , Meiose/genética , Saccharomyces cerevisiae/genética , Gametogênese/genética , Segregação de Cromossomos/genética , Replicação do DNA , Mamíferos
5.
Proc Natl Acad Sci U S A ; 120(30): e2219925120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459509

RESUMO

Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.


Assuntos
Infertilidade Masculina , Mutação de Sentido Incorreto , Humanos , Masculino , Camundongos , Animais , Reprodução , Alelos , Infertilidade Masculina/genética , Modelos Animais de Doenças , Septinas/genética
6.
Nature ; 567(7746): 105-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787433

RESUMO

Genomic instability can trigger cellular responses that include checkpoint activation, senescence and inflammation1,2. Although genomic instability has been extensively studied in cell culture and cancer paradigms, little is known about its effect during embryonic development, a period of rapid cellular proliferation. Here we report that mutations in the heterohexameric minichromosome maintenance complex-the DNA replicative helicase comprising MCM2 to MCM73,4-that cause genomic instability render female mouse embryos markedly more susceptible than males to embryonic lethality. This bias was not attributable to X chromosome-inactivation defects, differential replication licensing or X versus Y chromosome size, but rather to 'maleness'-XX embryos could be rescued by transgene-mediated sex reversal or testosterone administration. The ability of exogenous or endogenous testosterone to protect embryos was related to its anti-inflammatory properties5. Ibuprofen, a non-steroidal anti-inflammatory drug, rescued female embryos that contained mutations in not only the Mcm genes but also the Fancm gene; similar to MCM mutants, Fancm mutant embryos have increased levels of genomic instability (measured as the number of cells with micronuclei) from compromised replication fork repair6. In addition, deficiency in the anti-inflammatory IL10 receptor was synthetically lethal with the Mcm4Chaos3 helicase mutant. Our experiments indicate that, during development, DNA damage associated with DNA replication induces inflammation that is preferentially lethal to female embryos, because male embryos are protected by high levels of intrinsic testosterone.


Assuntos
Perda do Embrião/genética , Instabilidade Genômica/genética , Inflamação/genética , Proteínas de Manutenção de Minicromossomo/genética , Mutação , Caracteres Sexuais , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Proliferação de Células , Dano ao DNA , DNA Helicases/genética , Replicação do DNA , Perda do Embrião/patologia , Perda do Embrião/prevenção & controle , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Ibuprofeno/farmacologia , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/deficiência , Placenta/metabolismo , Placenta/patologia , Gravidez , Receptores de Interleucina-10/deficiência , Receptores de Interleucina-10/genética , Mutações Sintéticas Letais , Testosterona/farmacologia
7.
Mol Cell ; 67(6): 1026-1036.e2, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28844861

RESUMO

Pairing and synapsis of homologous chromosomes during meiosis is crucial for producing genetically normal gametes and is dependent upon repair of SPO11-induced double-strand breaks (DSBs) by homologous recombination. To prevent transmission of genetic defects, diverse organisms have evolved mechanisms to eliminate meiocytes containing unrepaired DSBs or unsynapsed chromosomes. Here we show that the CHK2 (CHEK2)-dependent DNA damage checkpoint culls not only recombination-defective mouse oocytes but also SPO11-deficient oocytes that are severely defective in homolog synapsis. The checkpoint is triggered in oocytes that accumulate a threshold level of spontaneous DSBs (∼10) in late prophase I, the repair of which is inhibited by the presence of HORMAD1/2 on unsynapsed chromosome axes. Furthermore, Hormad2 deletion rescued the fertility of oocytes containing a synapsis-proficient, DSB repair-defective mutation in a gene (Trip13) required for removal of HORMADs from synapsed chromosomes, suggesting that many meiotic DSBs are normally repaired by intersister recombination in mice.


Assuntos
Quinase do Ponto de Checagem 2/metabolismo , Pareamento Cromossômico , Dano ao DNA , Meiose , Oócitos/enzimologia , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Quinase do Ponto de Checagem 2/genética , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Feminino , Fertilidade , Genótipo , Infertilidade Feminina/enzimologia , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oócitos/patologia , Estágio Paquíteno , Fenótipo , Reparo de DNA por Recombinação , Fatores de Tempo , Técnicas de Cultura de Tecidos
8.
Cell ; 159(1): 216, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28934603
9.
BMC Genomics ; 24(1): 641, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884859

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS: We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION: The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Humanos , Animais , Camundongos , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Intestino Delgado/metabolismo , Organoides/metabolismo
10.
PLoS Biol ; 18(10): e3000903, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075054

RESUMO

Genetic diversity in offspring is induced by meiotic recombination, which is initiated between homologs at >200 sites originating from meiotic double-strand breaks (DSBs). Of this initial pool, only 1-2 DSBs per homolog pair will be designated to form meiotic crossovers (COs), where reciprocal genetic exchange occurs between parental chromosomes. Cyclin-dependent kinase 2 (CDK2) is known to localize to so-called "late recombination nodules" (LRNs) marking incipient CO sites. However, the role of CDK2 kinase activity in the process of CO formation remains uncertain. Here, we describe the phenotype of 2 Cdk2 point mutants with elevated or decreased activity, respectively. Elevated CDK2 activity was associated with increased numbers of LRN-associated proteins, including CDK2 itself and the MutL homolog 1 (MLH1) component of the MutLγ complex, but did not lead to increased numbers of COs. In contrast, reduced CDK2 activity leads to the complete absence of CO formation during meiotic prophase I. Our data suggest an important role for CDK2 in regulating MLH1 focus numbers and that the activity of this kinase is a key regulatory factor in the formation of meiotic COs.


Assuntos
Troca Genética , Quinase 2 Dependente de Ciclina/metabolismo , Meiose , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Reparo do DNA , Histonas/metabolismo , Ligases/metabolismo , Masculino , Prófase Meiótica I , Metáfase , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 1 Homóloga a MutL/metabolismo , Estágio Paquíteno , Cromossomos Sexuais/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Complexo Sinaptonêmico/metabolismo , Telômero/metabolismo
11.
J Microsc ; 291(3): 237-247, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413663

RESUMO

Lightsheet microscopy offers an ideal method for imaging of large (mm-cm scale) biological tissues rendered transparent via optical clearing protocols. However the diversity of clearing technologies and tissue types, and how these are adapted to the microscope can make tissue mounting complicated and somewhat irreproducible. Tissue preparation for imaging can involve glues and or equilibration in a variety of expensive and/or proprietary formulations. Here we present practical advice for mounting and capping cleared tissues in optical cuvettes for macroscopic imaging, providing a standardised 3D cell that can be imaged routinely and relatively inexpensively. We show that acrylic cuvettes cause minimal spherical aberration with objective numerical apertures less than 0.65. Furthermore, we describe methods for aligning and assessing the light sheets, discriminating fluorescence from autofluorescence, identifying chromatic artefacts due to differential scattering and removing streak artefacts such that they do not confound downstream 3D object segmentation analyses, with mouse embryo, liver and heart imaging as demonstrated examples.


Assuntos
Técnicas Histológicas , Microscopia , Camundongos , Animais , Imageamento Tridimensional/métodos
12.
Proc Natl Acad Sci U S A ; 117(24): 13680-13688, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32493750

RESUMO

Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining gene SRY is present in many cases, the etiology is unknown in most SRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms' tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P = 4.4 × 10-6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P < 1.8 × 10-4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts and Wt1Arg495Gly/Arg495Gly XX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor ß-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/metabolismo , Testículo/metabolismo , Proteínas WT1/metabolismo , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/patologia , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/patologia , Proteínas WT1/química , Proteínas WT1/genética , Dedos de Zinco , beta Catenina/genética , beta Catenina/metabolismo
13.
Hum Mol Genet ; 29(20): 3402-3411, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33075816

RESUMO

Approximately 7% of men worldwide suffer from infertility, with sperm abnormalities being the most common defect. Though genetic causes are thought to underlie a substantial fraction of idiopathic cases, the actual molecular bases are usually undetermined. Because the consequences of most genetic variants in populations are unknown, this complicates genetic diagnosis even after genome sequencing of patients. Some patients with ciliopathies, including primary ciliary dyskinesia and Bardet-Biedl syndrome, also suffer from infertility because cilia and sperm flagella share several characteristics. Here, we identified two deleterious alleles of RABL2A, a gene essential for normal function of cilia and flagella. Our in silico predictions and in vitro assays suggest that both alleles destabilize the protein. We constructed and analyzed mice homozygous for these two single-nucleotide polymorphisms, Rabl2L119F (rs80006029) and Rabl2V158F (rs200121688), and found that they exhibit ciliopathy-associated disorders including male infertility, early growth retardation, excessive weight gain in adulthood, heterotaxia, pre-axial polydactyly, neural tube defects and hydrocephalus. Our study provides a paradigm for triaging candidate infertility variants in the population for in vivo functional validation, using computational, in vitro and in vivo approaches.


Assuntos
Ciliopatias/etiologia , Infertilidade Masculina/etiologia , Polimorfismo de Nucleotídeo Único , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Ciliopatias/patologia , Feminino , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Fenótipo
14.
Development ; 146(21)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31582414

RESUMO

The ability of men to remain fertile throughout their lives depends upon establishment of a spermatogonial stem cell (SSC) pool from gonocyte progenitors, and thereafter balancing SSC renewal versus terminal differentiation. Here, we report that precise regulation of the cell cycle is crucial for this balance. Whereas cyclin-dependent kinase 2 (Cdk2) is not necessary for mouse viability or gametogenesis stages prior to meiotic prophase I, mice bearing a deregulated allele (Cdk2Y15S ) are severely deficient in spermatogonial differentiation. This allele disrupts an inhibitory phosphorylation site (Tyr15) for the kinase WEE1. Remarkably, Cdk2Y15S/Y15S mice possess abnormal clusters of mitotically active SSC-like cells, but these are eventually removed by apoptosis after failing to differentiate properly. Analyses of lineage markers, germ cell proliferation over time, and single cell RNA-seq data revealed delayed and defective differentiation of gonocytes into SSCs. Biochemical and genetic data demonstrated that Cdk2Y15S is a gain-of-function allele causing elevated kinase activity, which underlies these differentiation defects. Our results demonstrate that precise regulation of CDK2 kinase activity in male germ cell development is crucial for the gonocyte-to-spermatogonia transition and long-term spermatogenic homeostasis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Quinase 2 Dependente de Ciclina/metabolismo , Células Germinativas/enzimologia , Espermatogônias/citologia , Alelos , Animais , Apoptose , Sistemas CRISPR-Cas , Proliferação de Células , Análise por Conglomerados , Cruzamentos Genéticos , Células Germinativas/citologia , Heterozigoto , Homeostase , Masculino , Espectrometria de Massas , Meiose , Camundongos , Mutagênese Sítio-Dirigida , Fenótipo , Fosforilação , RNA Citoplasmático Pequeno/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Testículo/metabolismo , Transcriptoma
15.
Chromosoma ; 129(1): 69-82, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31940063

RESUMO

Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of Prdm9, we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete Prdm9 decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the Psmb1 gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Variações do Número de Cópias de DNA , Fertilidade/genética , Estágio Paquíteno/genética , Transgenes , Animais , Apoptose/genética , Quebras de DNA de Cadeia Dupla , Feminino , Patrimônio Genético , Masculino , Camundongos , Tamanho do Órgão , Contagem de Espermatozoides , Espermatócitos/metabolismo , Testículo/anatomia & histologia , Testículo/metabolismo
16.
Biol Reprod ; 104(1): 8-10, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33057575

RESUMO

The laboratory mouse is the most widely used animal model for studying the genetics and biology of mammalian development and reproduction. Embryonic stem cell (ESC) gene targeting technology, and the sophisticated genomic manipulations it allowed, was unique to this organism for a long period of time; this was a major factor in the mouse's rise to pre-eminence as a model system over the past three decades or so. The recent advent of CRISPR/Cas9 technology has democratized the application of genome editing to essentially all organisms. Nevertheless, the scientific infrastructure behind the mouse still makes it the organism of choice for studying molecular mechanisms of mammalian development, and for modeling human development and disease.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Marcação de Genes , Genes Letais , Animais , Camundongos , Reprodução
17.
Mol Cell ; 50(1): 67-81, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23523368

RESUMO

Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during postnatal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feedforward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals.


Assuntos
Meiose , Proteínas Proto-Oncogênicas c-myb/metabolismo , RNA Interferente Pequeno/biossíntese , Espermatogênese , Testículo/metabolismo , Transativadores/metabolismo , Animais , Proteínas Argonautas/deficiência , Proteínas Argonautas/genética , Evolução Biológica , Galinhas , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estágio Paquíteno , Fenótipo , Proteínas Proto-Oncogênicas c-myb/deficiência , Proteínas Proto-Oncogênicas c-myb/genética , Testículo/crescimento & desenvolvimento , Transativadores/deficiência , Transativadores/genética , Transcrição Gênica , Ativação Transcricional
18.
Genesis ; 58(8): e23368, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32343484

RESUMO

Maintaining genome integrity in the germline is essential for survival and propagation of a species. In both mouse and human, germ cells originate during fetal development and are hypersensitive to both endogenous and exogenous DNA damaging agents. Currently, mechanistic understanding of how primordial germ cells respond to DNA damage is limited in part by the tools available to study these cells. We developed a mouse transgenic reporter strain expressing a 53BP1-mCherry fusion protein under the control of the Oct4ΔPE embryonic germ cell-specific promoter. This reporter binds sites of DNA double strand breaks (DSBs) on chromatin, forming foci. Using ionizing radiation as a DNA DSB-inducing agent, we show that the transgenic reporter expresses specifically in the embryonic germ cells of both sexes and forms DNA damage induced foci in both a dose- and time-dependent manner. The dynamic time-sensitive and dose-sensitive DNA damage detection ability of this transgenic reporter, in combination with its specific expression in embryonic germ cells, makes it a versatile and valuable tool for increasing our understanding of DNA damage responses in these unique cells.


Assuntos
Dano ao DNA , Células Germinativas Embrionárias/metabolismo , Genes Reporter , Engenharia Genética/métodos , Animais , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Ligação Proteica , Proteína Vermelha Fluorescente
19.
Hum Mol Genet ; 27(22): 3911-3918, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30085085

RESUMO

Whole-exome or whole-genome sequencing is becoming routine in clinical situations for identifying mutations underlying presumed genetic causes of disease including infertility. While this is a powerful approach for implicating polymorphisms or de novo mutations in genes plausibly related to the phenotype, a greater challenge is to definitively prove causality. This is a crucial requisite for treatment, especially for infertility, in which validation options are limited. In this study, we created a mouse model of a putative infertility allele, DMC1M200V. DMC1 encodes a RecA homolog essential for meiotic recombination and fertility in mice. This allele was originally implicated as being responsible for the sterility of a homozygous African woman, a conclusion supported by subsequent biochemical analyses of the mutant protein and by studies of yeast with the orthologous amino acid change. Here, we found that Dmc1M200V/M200V male and female mice are fully fertile and do not exhibit any gonadal abnormalities. Detailed immunocytological analysis of meiosis revealed no defects suggestive of compromised fertility. This study serves as a cautionary tale for making conclusions about consequences of genetic variants, especially with respect to infertility, and emphasizes the importance of conducting relevant biological assays for making accurate diagnoses in the era of genomic medicine.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Infertilidade/genética , Meiose/genética , Proteínas Nucleares/genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Gônadas/crescimento & desenvolvimento , Gônadas/patologia , Humanos , Infertilidade/fisiopatologia , Masculino , Camundongos , Mutação , Proteínas de Ligação a Fosfato , Recombinases , Recombinação Genética
20.
Reproduction ; 160(1): 53-64, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272448

RESUMO

Reduced fertility of male mouse hybrids relative to their parents, or hybrid sterility, is governed by the hybrid sterility 1 (Hst1) locus. Rescue experiments with transgenes carrying sequences within or near Hst1 manifested that Hst1 contains the gene encoding meiosis-specific histone methyltransferase PRDM9. The Prdm9 gene is responsible for partial meiotic arrest, testicular atrophy, and low sperm count in (C57BL/6J x PWD)F1 mouse hybrids. Here we report that these male hybrids suffer an additional reproductive disadvantage, decreased sperm quality, which is (i) further exacerbated by the introduction of long transgenes carrying sequences from Hst1 with incomplete Prdm9 into their genome and (ii) controlled by the Prdm9 dosage. These transgenic male hybrids displayed the features of severe oligoasthenoteratozoospermia (OAT), a human infertility syndrome characterized by a low number of spermatozoa with poor motility and morphological abnormalities. Analysis of spermiogenesis in these mice revealed acrosome detachment, aberrant elongation and condensation of the nucleus. As a result, the transgenic sperm had acrosome malformations, abnormal chromatin packaging, and fragmented DNA with elevated base oxidation, revealed by using multiple methods. Heterozygosity for one null Prdm9 allele improved meiotic progression and sperm quality of both non- and transgenic hybrids. Our results indicate that genomic analysis of OAT patients should include consideration of allelic variants in PRDM9, and our transgenic models can serve as tools to understand the diverse molecular processes that, when perturbed, can cause this disease.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/fisiologia , Infertilidade Masculina/patologia , Meiose , Oligospermia/patologia , Motilidade dos Espermatozoides , Animais , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligospermia/etiologia , Oligospermia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA