Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nature ; 604(7904): 98-103, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355012

RESUMO

Neural activity in the hippocampus is known to reflect how animals move through an environment1,2. Although navigational behaviour may show considerable stability3-6, the tuning stability of individual hippocampal neurons remains unclear7-12. Here we used wireless calcium imaging to longitudinally monitor the activity of dorsal CA1 hippocampal neurons in freely flying bats performing highly reproducible flights in a familiar environment. We find that both the participation and the spatial selectivity of most neurons remain stable over days and weeks. We also find that apparent changes in tuning can be largely attributed to variations in the flight behaviour of the bats. Finally, we show that bats navigating in the same environment under different room lighting conditions (lights on versus lights off) exhibit substantial changes in flight behaviour that can give the illusion of neuronal instability. However, when similar flight paths are compared across conditions, the stability of the hippocampal code persists. Taken together, we show that the underlying hippocampal code is highly stable over days and across contexts if behaviour is taken into account.


Assuntos
Região CA1 Hipocampal , Quirópteros , Neurônios , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Cálcio , Quirópteros/fisiologia , Voo Animal/fisiologia , Iluminação , Neurônios/fisiologia , Navegação Espacial/fisiologia
2.
Nucleic Acids Res ; 52(14): 8515-8533, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38783381

RESUMO

MicroRNAs (miRNAs) are critical post-transcriptional regulators in many biological processes. They act by guiding RNA-induced silencing complexes to miRNA response elements (MREs) in target mRNAs, inducing translational inhibition and/or mRNA degradation. Functional MREs are expected to predominantly occur in the 3' untranslated region and involve perfect base-pairing of the miRNA seed. Here, we generate a high-resolution map of miR-181a/b-1 (miR-181) MREs to define the targeting rules of miR-181 in developing murine T cells. By combining a multi-omics approach with computational high-resolution analyses, we uncover novel miR-181 targets and demonstrate that miR-181 acts predominantly through RNA destabilization. Importantly, we discover an alternative seed match and identify a distinct set of targets with repeat elements in the coding sequence which are targeted by miR-181 and mediate translational inhibition. In conclusion, deep profiling of MREs in primary cells is critical to expand physiologically relevant targetomes and establish context-dependent miRNA targeting rules.


Assuntos
MicroRNAs , Elementos de Resposta , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Estabilidade de RNA/genética , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T/metabolismo , Fases de Leitura Aberta/genética , Camundongos Endogâmicos C57BL
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836590

RESUMO

Reactive oxygen species (ROS) can cause cellular damage and promote cancer development. Besides such harmful consequences of overproduction of ROS, all cells utilize ROS for signaling purposes and stabilization of cell homeostasis. In particular, the latter is supported by the NADPH oxidase 4 (Nox4) that constitutively produces low amounts of H2O2 By that mechanism, Nox4 forces differentiation of cells and prevents inflammation. We hypothesize a constitutive low level of H2O2 maintains basal activity of cellular surveillance systems and is unlikely to be cancerogenic. Utilizing two different murine models of cancerogen-induced solid tumors, we found that deletion of Nox4 promotes tumor formation and lowers recognition of DNA damage. Nox4 supports phosphorylation of H2AX (γH2AX), a prerequisite of DNA damage recognition, by retaining a sufficiently low abundance of the phosphatase PP2A in the nucleus. The underlying mechanism is continuous oxidation of AKT by Nox4. Interaction of oxidized AKT and PP2A captures the phosphatase in the cytosol. Absence of Nox4 facilitates nuclear PP2A translocation and dephosphorylation of γH2AX. Simultaneously AKT is left phosphorylated. Thus, in the absence of Nox4, DNA damage is not recognized and the increased activity of AKT supports proliferation. The combination of both events results in genomic instability and promotes tumor formation. By identifying Nox4 as a protective source of ROS in cancerogen-induced cancer, we provide a piece of knowledge for understanding the role of moderate production of ROS in preventing the initiation of malignancies.


Assuntos
Carcinógenos/toxicidade , NADPH Oxidase 4/genética , Neoplasias/induzido quimicamente , Animais , Núcleo Celular/metabolismo , Citosol/metabolismo , Dano ao DNA , Instabilidade Genômica , Camundongos , NADPH Oxidase 4/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Oxirredução , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
4.
Int J Mol Sci ; 25(19)2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39409049

RESUMO

The inhibitor-kappaB kinase epsilon (IKKε) represents a non-canonical IκB kinase that modulates NF-κB activity and interferon I responses. Inhibition of this pathway has been linked with atherosclerosis and metabolic dysfunction-associated steatotic liver disease (MASLD), yet the results are contradictory. In this study, we employed a combined model of hepatic PCSK9D377Y overexpression and a high-fat diet for 16 weeks to induce atherosclerosis and liver steatosis. The development of atherosclerotic plaques, serum lipid concentrations, and lipid metabolism in the liver and adipose tissue were compared between wild-type and IKKε knock-out mice. The formation and progression of plaques were markedly reduced in IKKε knockout mice, accompanied by reduced serum cholesterol levels, fat deposition, and macrophage infiltration within the plaque. Additionally, the development of a fatty liver was diminished in these mice, which may be attributed to decreased levels of multiple lipid species, particularly monounsaturated fatty acids, triglycerides, and ceramides in the serum. The modulation of several proteins within the liver and adipose tissue suggests that de novo lipogenesis and the inflammatory response are suppressed as a consequence of IKKε inhibition. In conclusion, our data suggest that the knockout of IKKε is involved in mechanisms of both atherosclerosis and MASLD. Inhibition of this pathway may therefore represent a novel approach to the treatment of cardiovascular and metabolic diseases.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Fígado Gorduroso , Quinase I-kappa B , Metabolismo dos Lipídeos , Camundongos Knockout , Pró-Proteína Convertase 9 , Animais , Masculino , Camundongos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/genética , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética
6.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069304

RESUMO

Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.


Assuntos
Metaloproteinase 12 da Matriz , Fagocitose , Humanos , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Fagocitose/fisiologia , Macrófagos/metabolismo , Inflamação/metabolismo , Regulação da Expressão Gênica , Apoptose/fisiologia
7.
FASEB J ; 35(6): e21656, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042211

RESUMO

Chronic inflammation-related diseases are characterized by persistent leukocyte infiltration into the underlying tissue. The vascular endothelium plays a major role in this pathophysiological condition. Only few therapeutic strategies focus on the vascular endothelium as a major target for an anti-inflammatory approach. In this study, we present the natural compound-derived carbazole derivative C81 as chemical modulator interfering with leukocyte-endothelial cell interactions. An in vivo assay employing intravital microscopy to monitor leukocyte trafficking after C81 treatment in postcapillary venules of a murine cremaster muscle was performed. Moreover, in vitro assays using HUVECs and monocytes were implemented. The impact of C81 on cell adhesion molecules and the NFκB signaling cascade was analyzed in vitro in endothelial cells. Effects of C81 on protein translation were determined by incorporation of a puromycin analog-based approach and polysome profiling. We found that C81 significantly reduced TNF-activated leukocyte trafficking in postcapillary venules. Similar results were obtained in vitro when C81 reduced leukocyte-endothelial cell interactions by down-regulating cell adhesion molecules. Focusing on the NFκB signaling cascade, we found that C81 reduced the activation on multiple levels of the cascade through promoted IκBα recovery by attenuation of IκBα ubiquitination and through reduced protein levels of TNFR1 caused by protein translation inhibition. We suggest that C81 might represent a promising lead compound for interfering with inflammation-related processes in endothelial cells by down-regulation of IκBα ubiquitination on the one hand and inhibition of translation on the other hand without exerting cytotoxic effects.


Assuntos
Carbazóis/farmacologia , Adesão Celular , Endotélio Vascular/fisiologia , Inflamação/imunologia , Leucócitos/fisiologia , NF-kappa B/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Comunicação Celular , Movimento Celular , Endotélio Vascular/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Transcriptoma
8.
Int J Mol Sci ; 23(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628634

RESUMO

Previous studies towards reduced oxygen availability have mostly focused on changes in total mRNA expression, neglecting underlying transcriptional and post-transcriptional events. Therefore, we generated a comprehensive overview of hypoxia-induced changes in total mRNA expression, global de novo transcription, and mRNA stability in monocytic THP-1 cells. Since hypoxic episodes often persist for prolonged periods, we further compared the adaptation to acute and chronic hypoxia. While total mRNA changes correlated well with enhanced transcription during short-term hypoxia, mRNA destabilization gained importance under chronic conditions. Reduced mRNA stability not only added to a compensatory attenuation of immune responses, but also, most notably, to the reduction in nuclear-encoded mRNAs associated with various mitochondrial functions. These changes may prevent the futile production of new mitochondria under conditions where mitochondria cannot exert their full metabolic function and are indeed actively removed by mitophagy. The post-transcriptional mode of regulation might further allow for the rapid recovery of mitochondrial capacities upon reoxygenation. Our results provide a comprehensive resource of functional mRNA expression dynamics and underlying transcriptional and post-transcriptional regulatory principles during the adaptation to hypoxia. Furthermore, we uncover that RNA stability regulation controls mitochondrial functions in the context of hypoxia.


Assuntos
Regulação da Expressão Gênica , Hipóxia , Aclimatação , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Neuropathol Appl Neurobiol ; 47(7): 1060-1079, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33974284

RESUMO

AIMS: Parkinson's disease (PD) is frequently associated with a prodromal sensory neuropathy manifesting with sensory loss and chronic pain. We have recently shown that PD-associated sensory neuropathy in patients is associated with high levels of glucosylceramides. Here, we assessed the underlying pathology and mechanisms in Pink1-/- SNCAA53T double mutant mice. METHODS: We studied nociceptive and olfactory behaviour and the neuropathology of dorsal root ganglia (DRGs), including ultrastructure, mitochondrial respiration, transcriptomes, outgrowth and calcium currents of primary neurons, and tissue ceramides and sphingolipids before the onset of a PD-like disease that spontaneously develops in Pink1-/- SNCAA53T double mutant mice beyond 15 months of age. RESULTS: Similar to PD patients, Pink1-/- SNCAA53T mice developed a progressive prodromal sensory neuropathy with a loss of thermal sensitivity starting as early as 4 months of age. In analogy to human plasma, lipid analyses revealed an accumulation of glucosylceramides (GlcCer) in the DRGs and sciatic nerves, which was associated with pathological mitochondria, impairment of mitochondrial respiration, and deregulation of transient receptor potential channels (TRPV and TRPA) at mRNA, protein and functional levels in DRGs. Direct exposure of DRG neurons to GlcCer caused transient hyperexcitability, followed by a premature decline of the viability of sensory neurons cultures upon repeated GlcCer application. CONCLUSIONS: The results suggest that pathological GlcCer contribute to prodromal sensory disease in PD mice via mitochondrial damage and calcium channel hyperexcitability. GlcCer-associated sensory neuron pathology might be amenable to GlcCer lowering therapeutic strategies.


Assuntos
Mutação/genética , Doença de Parkinson/genética , Proteínas Quinases/genética , alfa-Sinucleína/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Proteínas Quinases/deficiência , alfa-Sinucleína/metabolismo
10.
Cell Mol Life Sci ; 77(10): 2017-2027, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31392347

RESUMO

Translation is a highly regulated process, both at the global as well as on a transcript-specific level. Regulatory upstream open reading frames (uORFs) represent a mode to alter cap-dependent translation efficiency in a transcript-specific manner and are found in numerous mRNAs. In the majority of cases, uORFs inhibit the translation of their associated main ORFs. Consequently, their inactivation results in enhanced translation of the main ORF, a phenomenon best characterized in the context of the integrated stress response. In the present study, we identified potent translation-inhibitory uORFs in the transcript leader sequence (TLS) of tumor necrosis factor alpha induced protein 2 (TNFAIP2). The initial description of the uORFs was based on the observation that despite a massive induction of TNFAIP2 mRNA expression in response to interleukin 1ß (IL1ß), TNFAIP2 protein levels remained low in MCF7 cells. While we were able to characterize the uORFs with respect to their exact size and sequential requirements in this cellular context, only TPA stimulation partially overcame the translation-inhibitory activity of the TNFAIP2 uORFs. Characterization of TNFAIP2 translation in the context of monocyte-to-macrophage differentiation suggested that, while the uORFs efficiently block TNFAIP2 protein synthesis in monocytes, they are inactivated in mature macrophages, thus allowing for a massive increase in TNFAIP2 protein expression. In summary, we establish TNFAIP2 as a novel target of uORF-mediated translational regulation. Furthermore, our findings suggest that during macrophage differentiation a major uORF-dependent translational switch occurs.


Assuntos
Citocinas/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Regiões 5' não Traduzidas/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Humanos , Células MCF-7 , Processamento de Proteína Pós-Traducional , Ribossomos/genética
11.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668084

RESUMO

The interaction of macrophages with apoptotic cells is required for efficient resolution of inflammation. While apoptotic cell removal prevents inflammation due to secondary necrosis, it also alters the macrophage phenotype to hinder further inflammatory reactions. The interaction between apoptotic cells and macrophages is often studied by chemical or biological induction of apoptosis, which may introduce artifacts by affecting the macrophages as well and/or triggering unrelated signaling pathways. Here, we set up a pure cell death system in which NIH 3T3 cells expressing dimerizable Caspase-8 were co-cultured with peritoneal macrophages in a transwell system. Phenotype changes in macrophages induced by apoptotic cells were evaluated by RNA sequencing, which revealed an unexpectedly dominant impact on macrophage proliferation. This was confirmed in functional assays with primary peritoneal macrophages and IC-21 macrophages. Moreover, inhibition of apoptosis during Zymosan-induced peritonitis in mice decreased mRNA levels of cell cycle mediators in peritoneal macrophages. Proliferation of macrophages in response to apoptotic cells may be important to increase macrophage numbers in order to allow efficient clearance and resolution of inflammation.


Assuntos
Apoptose , Proliferação de Células , Macrófagos Peritoneais/citologia , Peritonite/patologia , Animais , Células Cultivadas , Técnicas de Cocultura , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Peritonite/metabolismo , Fagocitose , Zimosan/toxicidade
12.
Mol Carcinog ; 58(11): 2127-2138, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31436357

RESUMO

In solid tumors, tumor-associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia-inducible factors (HIFs). While HIF-1α is ubiquitously expressed, HIF-2α appears tissue-specific with consequences of HIF-2α expression in TAMs only being poorly characterized. An E0771 allograft breast tumor model revealed faster tumor growth in myeloid HIF-2α knockout (HIF-2αLysM-/- ) compared with wildtype (wt) mice. In an RNA-sequencing approach of FACS sorted wt and HIF-2α LysM-/- TAMs, serine protease inhibitor, Kunitz type-1 ( Spint1) emerged as a promising candidate for HIF-2α-dependent regulation. We validated reduced Spint1 messenger RNA expression and concomitant Spint1 protein secretion under hypoxia in HIF-2α-deficient bone marrow-derived macrophages (BMDMs) compared with wt BMDMs. In line with the physiological function of Spint1 as an inhibitor of hepatocyte growth factor (HGF) activation, supernatants of hypoxic HIF-2α knockout BMDMs, not containing Spint1, were able to release proliferative properties of inactive pro-HGF on breast tumor cells. In contrast, hypoxic wt BMDM supernatants containing abundant Spint1 amounts failed to do so. We propose that Spint1 contributes to the tumor-suppressive function of HIF-2α in TAMs in breast tumor development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias/genética , Proteínas Secretadas Inibidoras de Proteinases/genética , Microambiente Tumoral/genética , Aloenxertos , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Fator de Crescimento de Hepatócito/genética , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Glicoproteínas de Membrana/genética , Camundongos , Neoplasias/patologia , RNA Mensageiro
13.
J Immunol ; 198(6): 2414-2425, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28179495

RESUMO

Peroxisomes are proposed to play an important role in the regulation of systemic inflammation; however, the functional role of these organelles in inflammatory responses of myeloid immune cells is largely unknown. In this article, we demonstrate that the nonclassical peroxisome proliferator 4-phenyl butyric acid is an efficient inducer of peroxisomes in various models of murine macrophages, such as primary alveolar and peritoneal macrophages and the macrophage cell line RAW264.7, but not in primary bone marrow-derived macrophages. Further, proliferation of peroxisomes blocked the TLR4 ligand LPS-induced proinflammatory response, as detected by the reduced induction of the proinflammatory protein cyclooxygenase (COX)-2 and the proinflammatory cytokines TNF-α, IL-6, and IL-12. In contrast, disturbing peroxisome function by knockdown of peroxisomal gene Pex14 or Mfp2 markedly increased the LPS-dependent upregulation of the proinflammatory proteins COX-2 and TNF-α. Specifically, induction of peroxisomes did not affect the upregulation of COX-2 at the mRNA level, but it reduced the half-life of COX-2 protein, which was restored by COX-2 enzyme inhibitors but not by proteasomal and lysosomal inhibitors. Liquid chromatography-tandem mass spectrometry analysis revealed that various anti-inflammatory lipid mediators (e.g., docosahexaenoic acid) were increased in the conditioned medium from peroxisome-induced macrophages, which blocked LPS-induced COX-2 upregulation in naive RAW264.7 cells and human primary peripheral blood-derived macrophages. Importantly, LPS itself induced peroxisomes that correlated with the regulation of COX-2 during the late phase of LPS activation in macrophages. In conclusion, our findings identify a previously unidentified role for peroxisomes in macrophage inflammatory responses and suggest that peroxisomes are involved in the physiological cessation of macrophage activation.


Assuntos
Ativação de Macrófagos , Macrófagos/imunologia , Peroxissomos/imunologia , Fenilbutiratos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Multifuncional do Peroxissomo-2/genética , Cultura Primária de Células , Células RAW 264.7 , Proteínas Repressoras/genética
14.
Cell Mol Life Sci ; 75(16): 3051-3067, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29464284

RESUMO

Cell stress such as hypoxia elicits adaptive responses, also on the level of mitochondria, and in part is mediated by the hypoxia-inducible factor (HIF) 1α. Adaptation of mitochondria towards acute hypoxic conditions is reasonably well understood, while regulatory mechanisms, especially of respiratory chain assembly factors, under chronic hypoxia remains elusive. One of these assembly factors is transmembrane protein 126B (TMEM126B). This protein is part of the mitochondrial complex I assembly machinery. We identified changes in complex I abundance under chronic hypoxia, in association with impaired substrate-specific mitochondrial respiration. Complexome profiling of isolated mitochondria of the human leukemia monocytic cell line THP-1 revealed HIF-1α-dependent deficits in complex I assembly and mitochondrial complex I assembly complex (MCIA) abundance. Of all mitochondrial MCIA members, we proved a selective HIF-1-dependent decrease of TMEM126B under chronic hypoxia. Mechanistically, HIF-1α induces the E3-ubiquitin ligase F-box/WD repeat-containing protein 1A (ß-TrCP1), which in turn facilitates the proteolytic degradation of TMEM126B. Attenuating a functional complex I assembly appears critical for cellular adaptation towards chronic hypoxia and is linked to destruction of the mitochondrial assembly factor TMEM126B.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Sequência de Aminoácidos , Hipóxia Celular , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Proteólise , Interferência de RNA , Células THP-1
15.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505876

RESUMO

: Cancer-associated fibroblasts (CAFs) in the tumor microenvironment contribute to all stages of tumorigenesis and are usually considered to be tumor-promoting cells. CAFs show a remarkable degree of heterogeneity, which is attributed to developmental origin or to local environmental niches, resulting in distinct CAF subsets within individual tumors. While CAF heterogeneity is frequently investigated in late-stage tumors, data on longitudinal CAF development in tumors are lacking. To this end, we used the transgenic polyoma middle T oncogene-induced mouse mammary carcinoma model and performed whole transcriptome analysis in FACS-sorted fibroblasts from early- and late-stage tumors. We observed a shift in fibroblast populations over time towards a subset previously shown to negatively correlate with patient survival, which was confirmed by multispectral immunofluorescence analysis. Moreover, we identified a transcriptomic signature distinguishing CAFs from early- and late-stage tumors. Importantly, the signature of early-stage CAFs correlated well with tumor stage and survival in human mammary carcinoma patients. A random forest analysis suggested predictive value of the complete set of differentially expressed genes between early- and late-stage CAFs on bulk tumor patient samples, supporting the clinical relevance of our findings. In conclusion, our data show transcriptome alterations in CAFs during tumorigenesis in the mammary gland, which suggest that CAFs are educated by the tumor over time to promote tumor development. Moreover, we show that murine CAF gene signatures can harbor predictive value for human cancer.


Assuntos
Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/metabolismo , Transcrição Gênica , Animais , Feminino , Fibroblastos/patologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos
16.
PLoS Genet ; 11(5): e1005236, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25978500

RESUMO

Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.


Assuntos
Regulação da Expressão Gênica , Ácido Hidroxi-Indolacético/química , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Serotonina/química , Alelos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mapeamento Cromossômico , Técnicas de Genotipagem , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Locos de Características Quantitativas , Transdução de Sinais
17.
J Biol Chem ; 291(44): 22949-22960, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27629417

RESUMO

GILZ (glucocorticoid-induced leucine zipper) is inducible by glucocorticoids and plays a key role in their mode of action. GILZ attenuates inflammation mainly by inhibition of NF-κB and mitogen-activated protein kinase activation but does not seem to be involved in the severe side effects observed after glucocorticoid treatment. Therefore, GILZ might be a promising target for new therapeutic approaches. The present work focuses on the natural product curcumin, which has previously been reported to inhibit NF-κB. GILZ was inducible by curcumin in macrophage cell lines, primary human monocyte-derived macrophages, and murine bone marrow-derived macrophages. The up-regulation of GILZ was neither associated with glucocorticoid receptor activation nor with transcriptional induction or mRNA or protein stabilization but was a result of enhanced translation. Because the GILZ 3'-UTR contains AU-rich elements (AREs), we analyzed the role of the mRNA-binding protein HuR, which has been shown to promote the translation of ARE-containing mRNAs. Our results suggest that curcumin treatment induces HuR expression. An RNA immunoprecipitation assay confirmed that HuR can bind GILZ mRNA. In accordance, HuR overexpression led to increased GILZ protein levels but had no effect on GILZ mRNA expression. Our data employing siRNA in LPS-activated RAW264.7 macrophages show that curcumin facilitates its anti-inflammatory action by induction of GILZ in macrophages. Experiments with LPS-activated bone marrow-derived macrophages from wild-type and GILZ knock-out mice demonstrated that curcumin inhibits the activity of inflammatory regulators, such as NF-κB or ERK, and subsequent TNF-α production via GILZ. In summary, our data indicate that HuR-dependent GILZ induction contributes to the anti-inflammatory properties of curcumin.


Assuntos
Curcumina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Extratos Vegetais/farmacologia , Fatores de Transcrição/genética , Animais , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , Fatores de Transcrição/imunologia
18.
Biochim Biophys Acta ; 1859(7): 848-59, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27168114

RESUMO

Translation is an energy-intensive process and tightly regulated. Generally, translation is initiated in a cap-dependent manner. Under stress conditions, typically found within the tumor microenvironment in association with e.g. nutrient deprivation or hypoxia, cap-dependent translation decreases, and alternative modes of translation initiation become more important. Specifically, internal ribosome entry sites (IRES) facilitate translation of specific mRNAs under otherwise translation-inhibitory conditions. This mechanism is controlled by IRES trans-acting factors (ITAF), i.e. by RNA-binding proteins, which interact with and determine the activity of selected IRESs. We aimed at characterizing the translational regulation of the IL-33 decoy receptor sST2, which was enhanced by fibroblast growth factor 2 (FGF2). We identified and verified an IRES within the 5'UTR of sST2. Furthermore, we found that MEK/ERK signaling contributes to FGF2-induced, sST2-IRES activation and translation. Determination of the sST2-5'UTR structure by in-line probing followed by deletion analyses identified 23 nucleotides within the sST2-5'UTR to be required for optimal IRES activity. Finally, we show that the RNA-binding protein heterogeneous ribonucleoprotein A1 (hnRNP A1) binds to the sST2-5'UTR, acts as an ITAF, and thus controls the activity of the sST2-IRES and consequently sST2 translation. Specifically, FGF2 enhances nuclear-cytoplasmic translocation of hnRNP A1, which requires intact MEK/ERK activity. In summary, we provide evidence that the sST2-5'UTR contains an IRES element, which is activated by a MEK/ERK-dependent increase in cytoplasmic localization of hnRNP A1 in response to FGF2, enhancing the translation of sST2.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/fisiologia , Sítios Internos de Entrada Ribossomal/fisiologia , Biossíntese de Proteínas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Regiões 5' não Traduzidas/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7 , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Solubilidade
19.
Mol Carcinog ; 56(12): 2620-2629, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28731284

RESUMO

The RNA-binding protein HuR promotes tumor growth by affecting proliferation, metastasis, apoptosis, and angiogenesis. Although immune cells, especially tumor-associated macrophages, are critical components of the tumor stroma, the influence of HuR in tumors on the recruitment of immune cells remains poorly understood. In the present study, we, therefore, aimed to elucidate the impact of tumor cell HuR on the interaction between tumor cells and macrophages. To this end, we stably depleted HuR in human MCF-7 breast cancer cells. We found that HuR-deficient cells not only showed reduced proliferation, they further expressed elevated levels of the chemokine CCL5. HuR-dependent repression of CCL5 was neither caused by altered CCL5 mRNA stability, nor by changes in CCL5 translation. Instead, loss of HuR augmented transcription of CCL5, which was mediated via an interferon-stimulated response element in the CCL5 promoter. Furthermore, HuR depletion enhanced macrophage recruitment into MCF-7 tumor spheroids, an effect which was completely lost upon neutralization of CCL5. HuR expression further negatively correlated with CCL5 expression and macrophage appearance in a cohort of breast tumors. Thus, while HuR is well-characterized to support various pro-tumorigenic features in tumor cells, we provide evidence that it limits the recruitment of macrophages into tumors by repressing CCL5. As macrophage infiltration is associated with poor prognosis, our findings underline the highly cell-type and context specific role of HuR in tumorigenesis.


Assuntos
Neoplasias da Mama/genética , Quimiocina CCL5/genética , Proteína Semelhante a ELAV 1/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CCL5/metabolismo , Técnicas de Cocultura , Estudos de Coortes , Proteína Semelhante a ELAV 1/metabolismo , Feminino , Humanos , Células MCF-7 , Macrófagos/citologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares/metabolismo
20.
J Pathol ; 239(3): 274-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27038000

RESUMO

Tumour cell-secreted factors skew infiltrating immune cells towards a tumour-supporting phenotype, expressing pro-tumourigenic mediators. However, the influence of lipocalin-2 (Lcn2) on the metastatic cascade in the tumour micro-environment is still not clearly defined. Here, we explored the role of stroma-derived, especially macrophage-released, Lcn2 in breast cancer progression. Knockdown studies and neutralizing antibody approaches showed that Lcn2 contributes to the early events of metastasis in vitro. The release of Lcn2 from macrophages induced an epithelial-mesenchymal transition programme in MCF-7 breast cancer cells and enhanced local migration as well as invasion into the extracellular matrix, using a three-dimensioanl (3D) spheroid model. Moreover, a global Lcn2 deficiency attenuated breast cancer metastasis in both the MMTV-PyMT breast cancer model and a xenograft model inoculating MCF-7 cells pretreated with supernatants from wild-type and Lcn2-knockdown macrophages. To dissect the role of stroma-derived Lcn2, we employed an orthotopic mammary tumour mouse model. Implantation of wild-type PyMT tumour cells into Lcn2-deficient mice left primary mammary tumour formation unaltered, but specifically reduced tumour cell dissemination into the lung. We conclude that stroma-secreted Lcn2 promotes metastasis in vitro and in vivo, thereby contributing to tumour progression. Our study highlights the tumourigenic potential of stroma-released Lcn2 and suggests Lcn2 as a putative therapeutic target. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias da Mama/genética , Lipocalina-2/metabolismo , Neoplasias Pulmonares/secundário , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transformação Celular Neoplásica , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Lipocalina-2/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Células Estromais/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA