Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 226(1): 189-204, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31749193

RESUMO

Arabidopsis plants overexpressing glycolate oxidase in chloroplasts (GO5) and loss-of-function mutants of the major peroxisomal catalase isoform, cat2-2, produce increased hydrogen peroxide (H2 O2 ) amounts from the respective organelles when subjected to photorespiratory conditions like increased light intensity. Here, we have investigated if and how the signaling processes triggered by H2 O2 production in response to shifts in environmental conditions and the concomitant induction of indole phytoalexin biosynthesis in GO5 affect susceptibility towards the hemibiotrophic fungus Colletotrichum higginsianum. Combining histological, biochemical, and molecular assays, we found that the accumulation of the phytoalexin camalexin was comparable between GO genotypes and cat2-2 in the absence of pathogen. Compared with wild-type, GO5 showed improved resistance after light-shift-mediated production of H2 O2 , whereas cat2-2 became more susceptible and allowed significantly more pathogen entry. Unlike GO5, cat2-2 suffered from severe oxidative stress after light shifts, as indicated by glutathione pool size and oxidation state. We discuss a connection between elevated oxidative stress and dampened induction of salicylic acid mediated defense in cat2-2. Genetic analyses demonstrated that induced resistance of GO5 is dependent on WRKY33, but not on camalexin production. We propose that indole carbonyl nitriles might play a role in defense against C. higginsianum.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Colletotrichum , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Colletotrichum/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
2.
Nat Aging ; 4(4): 595-612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519806

RESUMO

Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.


Assuntos
Células Endoteliais , Proteômica , Camundongos , Animais , Células Endoteliais/metabolismo , Proteômica/métodos , Encéfalo/metabolismo , Endotélio/metabolismo , Apolipoproteínas E/metabolismo
3.
J Clin Invest ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888964

RESUMO

The ß-secretase BACE1 is a central drug target for Alzheimer's disease. Clinically tested, BACE1-directed inhibitors also block the homologous protease BACE2. Yet, little is known about physiological BACE2 substrates and functions in vivo. Here, we identify BACE2 as the protease shedding the lymphangiogenic vascular endothelial growth factor receptor 3 (VEGFR3). Inactivation of BACE2, but not BACE1, inhibited shedding of VEGFR3 from primary human lymphatic endothelial cells (LECs) and reduced release of the shed, soluble VEGFR3 (sVEGFR3) ectodomain into the blood of mice, non-human primates and humans. Functionally, BACE2 inactivation increased full-length VEGFR3 and enhanced VEGFR3 signaling in LECs and also in vivo in zebrafish, where enhanced migration of LECs was observed. Thus, this study identifies BACE2 as a modulator of lymphangiogenic VEGFR3 signaling and demonstrates the utility of sVEGFR3 as a pharmacodynamic plasma marker for BACE2 activity in vivo, a prerequisite for developing BACE1-selective inhibitors for a safer prevention of Alzheimer's disease.

4.
Nat Commun ; 15(1): 5944, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013852

RESUMO

Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Animais , Humanos , Camundongos , Conformação Proteica , Multimerização Proteica , Células HEK293 , Encéfalo/metabolismo , Encéfalo/patologia , Mutação , Mutação com Perda de Função
5.
Mol Neurobiol ; 59(2): 1183-1198, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34958451

RESUMO

The membrane protein seizure 6-like (SEZ6L) is a neuronal substrate of the Alzheimer's disease protease BACE1, and little is known about its physiological function in the nervous system. Here, we show that SEZ6L constitutive knockout mice display motor phenotypes in adulthood, including changes in gait and decreased motor coordination. Additionally, SEZ6L knockout mice displayed increased anxiety-like behaviour, although spatial learning and memory in the Morris water maze were normal. Analysis of the gross anatomy and proteome of the adult SEZ6L knockout cerebellum did not reveal any major differences compared to wild type, indicating that lack of SEZ6L in other regions of the nervous system may contribute to the phenotypes observed. In summary, our study establishes physiological functions for SEZ6L in regulating motor coordination and curbing anxiety-related behaviour, indicating that aberrant SEZ6L function in the human nervous system may contribute to movement disorders and neuropsychiatric diseases.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Proteínas de Membrana , Atividade Motora , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Aprendizagem em Labirinto , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
J Leukoc Biol ; 81(1): 186-94, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17053164

RESUMO

Alveolar macrophages (AMs) and peribronchial/perivascular macrophages are probably involved in lung allograft damage. We investigate leukocyte infiltration into graft tissue and address the question whether proliferation in situ contributes to macrophage homeostasis and accumulation. Lung transplantation was performed in the Lewis (LEW)-to-LEW and in the Dark Agouti-to-LEW rat strain combination. Graft infiltration by ED1+ and ED2+ (CD163) macrophages was analyzed by immunohistochemistry (IHC) and compared with infiltration by lymphocytes. Cells in the S-phase of the cell cycle were pulse-labeled with BrdU and detected immunohistochemically. Finally, the donor or recipient origin of AMs was determined by IHC and in situ hybridization. ED1+ AMs in allogeneic transplants increased by more than 25-fold from Days 1 to 5. In addition, large, peribronchial/perivascular infiltrates developed containing numerous ED1+ cells. Although AMs in normal rat lungs are CD163-, AMs up-regulated CD163 between Days 4 and 5, reaching maximum values on Day 6. Lymphocytes were less numerous than macrophages. About 16% of the AMs and 10% of the peribronchial/perivascular macrophages were in the S-phase of the cell cycle on Day 2 post-transplantation. No differences in the frequency of BrdU+ macrophages were obvious between isografts and allografts. AMs of donor origin increased in number considerably during allograft rejection. In conclusion, the cellular infiltrate in lung allografts is dominated by macrophages, which exhibit an unusual phenotype and a strong capacity for mitotic self-renewal.


Assuntos
Transplante de Pulmão/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Transplante Homólogo/imunologia , Transplante Isogênico/imunologia , Animais , Modelos Animais de Doenças , Ectodisplasinas/metabolismo , Rejeição de Enxerto/imunologia , Pulmão/metabolismo , Transplante de Pulmão/patologia , Linfócitos/metabolismo , Linfócitos/fisiologia , Macrófagos/metabolismo , Macrófagos Alveolares/fisiologia , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA