Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Clin Exp Rheumatol ; 42(2): 213-224, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38488099

RESUMO

Idiopathic inflammatory myopathies are a group of rare, autoimmune, diseases typically involving striate muscle and also variously affecting several other systems or organs, such as joints, skin, lungs, heart and gastrointestinal tract. IIM are mainly characterised by subacute onset and chronic course and are burdened by significant morbidity and mortality. Despite the rarity of these conditions, several efforts have been undertaken in the last years to better understand their pathogenesis, as well as to achieve a more precise classification and to define the optimal therapeutic approach. The aim of this review is to provide an up-to-date digest of the most relevant studies published on this topic over the last year.


Assuntos
Doenças Autoimunes , Miosite , Humanos , Miosite/diagnóstico , Miosite/tratamento farmacológico , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/terapia
2.
Nervenarzt ; 95(8): 721-729, 2024 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-38683354

RESUMO

BACKGROUND: Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES: The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS: This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS: The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS: The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/métodos , Humanos , Alemanha , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Doenças Musculares/diagnóstico por imagem , Guias de Prática Clínica como Assunto , Radiologia/normas , Neurologia/normas
3.
Biochem Soc Trans ; 51(6): 2093-2101, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38108475

RESUMO

Telomerase is a complex ribonucleoprotein scaffolded by the telomerase RNA (TR). Telomere lengthening by telomerase is essential to maintain the proliferative potential of stem cells and germ cells, and telomerase is inappropriately activated in the majority of cancers. Assembly of TR with its 12 protein co-factors and the maturation of the 5'- and 3'-ends of TR have been the focus of intense research efforts over the past two decades. High-resolution Cryo-EM structures of human telomerase, high-throughput sequencing of the 3' end of TR, and live cell imaging of various telomerase components have significantly advanced our understanding of the molecular mechanisms that govern telomerase biogenesis, yet many important questions remain unaddressed. In this review, we will summarize these recent advances and highlight the remaining key questions with the ultimate goal of targeting telomerase assembly to suppress telomere maintenance in cancer cells or to promote telomerase activity in patients affected by telomere shortening disorders.


Assuntos
Neoplasias , Telomerase , Humanos , Telomerase/metabolismo , Telômero/metabolismo , Ribonucleoproteínas/genética , Homeostase do Telômero
4.
DNA Repair (Amst) ; 141: 103716, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996771

RESUMO

Given its central role in life, DNA is remarkably easy to damage. Double strand breaks (DSBs) are the most toxic form of DNA damage, and DSBs pose the greatest danger to genomic integrity. In higher vertebrates, the non-homologous end joining pathway (NHEJ) is the predominate pathway that repairs DSBs. NHEJ has three steps: 1) DNA end recognition by the DNA dependent protein kinase [DNA-PK], 2) DNA end-processing by numerous NHEJ accessory factors, and 3) DNA end ligation by the DNA ligase IV complex (LX4). Although this would appear to be a relatively simple mechanism, it has become increasingly apparent that it is not. Recently, much insight has been derived regarding the mechanism of non-homologous end joining through a proliferation of cryo-EM studies, structure-function mutational experiments informed by these new structural data, and novel single-molecule imaging approaches. An emerging consensus in the field is that NHEJ progresses from initial DSB end recognition by DNA-PK to synapsis of the two DNA ends in a long-range synaptic complex where ends are held too far apart (115 Å) for ligation, and then progress to a short-range synaptic complex where ends are positioned close enough for ligation. What was surprising from these structural studies was the observation of two distinct types of DNA-PK dimers that represent NHEJ long-range complexes. In this review, we summarize current knowledge about the function of the distinct NHEJ synaptic complexes and align this new information with emerging cellular single-molecule microscopy studies as well as with previous studies of DNA-PK's function in repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA , Humanos , Proteína Quinase Ativada por DNA/metabolismo , Animais , DNA/metabolismo , Pareamento Cromossômico , DNA Ligase Dependente de ATP/metabolismo
5.
bioRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826211

RESUMO

Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double-stranded breaks (DSBs) in vertebrates. However, due to challenges in detecting DSBs in living cells, the repair capacity of the NHEJ pathway is unknown. The DNA termini of many DSBs must be processed to allow ligation while minimizing genetic changes that result from break repair. Emerging models propose that DNA termini are first synapsed ~115Å apart in one of several long-range synaptic complexes before transitioning into a short-range synaptic complex that juxtaposes DNA ends to facilitate ligation. The transition from long-range to short-range synaptic complexes involves both conformational and compositional changes of the NHEJ factors bound to the DNA break. Importantly, it is unclear how NHEJ proceeds in vivo because of the challenges involved in analyzing recruitment of NHEJ factors to DSBs over time in living cells. Here, we develop a new approach to study the temporal and compositional dynamics of NHEJ complexes using live cell single-molecule imaging. Our results provide direct evidence for stepwise maturation of the NHEJ complex, pinpoint key regulatory steps in NHEJ progression, and define the overall repair capacity NHEJ in living cells.

6.
Neuromuscul Disord ; 37: 36-51, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38522330

RESUMO

Since the publication of the 2013 European Neuromuscular Center (ENMC) diagnostic criteria for Inclusion Body Myositis (IBM), several advances have been made regarding IBM epidemiology, pathogenesis, diagnostic tools, and clinical trial readiness. Novel diagnostic tools include muscle imaging techniques such as MRI and ultrasound, and serological testing for cytosolic 5'-nucleotidase-1A antibodies. The 272nd ENMC workshop aimed to develop new diagnostic criteria, discuss clinical outcome measures and clinical trial readiness. The workshop started with patient representatives highlighting several understudied symptoms and the urge for a timely diagnosis. This was followed by presentations from IBM experts highlighting the new developments in the field. This report is composed of two parts, the first part providing new diagnostic criteria on which consensus was achieved. The second part focuses on the use of outcome measures in clinical practice and clinical trials, highlighting current limitations and outlining the goals for future studies.


Assuntos
Miosite de Corpos de Inclusão , Miosite , Humanos , Consenso , Imageamento por Ressonância Magnética , Miosite/diagnóstico , Miosite de Corpos de Inclusão/terapia , Miosite de Corpos de Inclusão/tratamento farmacológico , Países Baixos , Avaliação de Resultados em Cuidados de Saúde
7.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775785

RESUMO

Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation. Autophagy can be activated by nutrient stress, for example, by a reduction in the cellular levels of amino acids. In contrast, how autophagy is regulated by low cellular ATP levels via the AMP-activated protein kinase (AMPK), an important therapeutic target, is less clear. Using live-cell imaging and an automated image analysis pipeline, we systematically dissect how nutrient starvation regulates autophagosome biogenesis. We demonstrate that glucose starvation downregulates autophagosome maturation by AMPK-mediated inhibition of phagophore tethering to donor membrane. Our results clarify AMPKs regulatory role in autophagy and highlight its potential as a therapeutic target to reduce autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagossomos , Autofagia , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagossomos/metabolismo , Glucose/metabolismo , Linhagem Celular
8.
Radiologie (Heidelb) ; 64(8): 653-662, 2024 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-38639916

RESUMO

BACKGROUND: Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES: The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS: This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS: The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS: The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.


Assuntos
Imageamento por Ressonância Magnética , Doenças Musculares , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Humanos , Doenças Musculares/diagnóstico por imagem , Alemanha , Guias de Prática Clínica como Assunto , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia
9.
Res Sq ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168382

RESUMO

It has been known for decades that the DNA-dependent protein kinase (DNA-PK) is only an active serine/threonine protein kinase when it is bound to a DNA double-stranded end; still, the molecular details of how this activation is achieved have remained elusive. The recent surge in structural information for DNA-PK complexes has provided valuable insights into the process of DNA end recognition by DNA-PK. A particularly intriguing feature of this kinase is a region of the protein that can transition from a seemingly structurally disordered state to a single alpha-helix that traverses down the DNA binding cradle. The DNA-PK bound DNA end of the DNA substrate engages with and appears to split around this helix which has been named the DNA End Blocking helix (DEB). Here a mutational approach is utilized to clarify the role of the DEB, and how DNA ends activate the enzyme. Our data suggest two distinct methods of kinase activation that is dependent on the DNA end chemistry. If the DNA end can split around the helix and stabilize the interaction between the DNA end and the DEB with a recently defined Helix-Hairpin-Helix (HHH) motif, the kinase forms an end-protection monomer that is active towards DNA-PK's many substrates. But if the DNA end cannot stably interact with the DEB [because of the DNA end structure, for instance hairpins, or because the DEB has been disrupted by mutation], the kinase is only partially activated, resulting in specific autophosphorylations of the DNA-PK monomer that allows nucleolytic end-processing. We posit that mutants that disrupt the capacity to stably generate the DEB/HHH DNA end-interaction are inefficient in generating the dimer complex that is requisite for NHEJ. In support of this idea, mutations that promote formation of this dimer partially rescue the severe cellular phenotypes associated with mutation of the DEB helix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA