Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
EMBO J ; 41(17): e111608, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833542

RESUMO

The SARS-CoV-2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'-O-ribose cap needed for viral immune escape. We find that the host cap 2'-O-ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS-CoV-2 replication. Using in silico target-based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti-SARS-CoV-2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co-substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID-19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection-induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Inflamação/tratamento farmacológico , Metiltransferases/metabolismo , Camundongos , Capuzes de RNA/metabolismo , RNA Viral/genética , Ribose , Proteínas não Estruturais Virais/genética
2.
Am J Respir Crit Care Med ; 209(8): 947-959, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38064241

RESUMO

Rationale: The strongest genetic risk factor for childhood-onset asthma, the 17q21 locus, is associated with increased viral susceptibility and disease-promoting processes.Objectives: To identify biological targets underlying the escalated viral susceptibility associated with the clinical phenotype mediated by the 17q21 locus.Methods: Genome-wide transcriptome analysis of nasal brush samples from 261 children (78 healthy, 79 with wheezing at preschool age, 104 asthmatic) within the ALLIANCE (All-Age-Asthma) cohort, with a median age of 10.0 (range, 1.0-20.0) years, was conducted to explore the impact of their 17q21 genotype (SNP rs72163891). Concurrently, nasal secretions from the same patients and visits were collected, and high-sensitivity mesoscale technology was employed to measure IFN protein levels.Measurements and Main Results: This study revealed that the 17q21 risk allele induces a genotype- and asthma/wheeze phenotype-dependent enhancement of mucosal GSDMB expression as the only relevant 17q21-encoded gene in children with preschool wheeze. Increased GSDMB expression correlated with the activation of a type-1 proinflammatory, cell-lytic immune, and natural killer signature, encompassing key genes linked to an IFN type-2-signature (IFNG, CXCL9, CXCL10, KLRC1, CD8A, GZMA). Conversely, there was a reduction in IFN type 1 and type 3 expression signatures at the mRNA and protein levels.Conclusions: This study demonstrates a novel disease-driving mechanism induced by the 17q21 risk allele. Increased mucosal GSDMB expression is associated with a cell-lytic immune response coupled with compromised airway immunocompetence. These findings suggest that GSDMB-related airway cell death and perturbations in the mucosal IFN signature account for the increased vulnerability of 17q21 risk allele carriers to respiratory viral infections during early life, opening new options for future biological interventions.The All-Age-Asthma (ALLIANCE) cohort is registered at www.clinicaltrials.gov (pediatric arm, NCT02496468).


Assuntos
Asma , Pré-Escolar , Criança , Humanos , Lactente , Adolescente , Adulto Jovem , Adulto , Idoso de 80 Anos ou mais , Genótipo , Fenótipo , Alelos , RNA Mensageiro , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
3.
J Allergy Clin Immunol ; 153(3): 844-851, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995860

RESUMO

BACKGROUND: Studies have linked daily pollen counts to respiratory allergic health outcomes, but few have considered allergen levels. OBJECTIVE: We sought to assess associations of grass pollen counts and grass allergen levels (Phl p 5) with respiratory allergic health symptoms in a panel of 93 adults with moderate-severe allergic rhinitis and daily asthma hospital admissions in London, United Kingdom. METHODS: Daily symptom and medication scores were collected from adult participants in an allergy clinical trial. Daily counts of asthma hospital admissions in the London general population were obtained from Hospital Episode Statistics data. Daily grass pollen counts were measured using a volumetric air sampler, and novel Phl p 5 levels were measured using a ChemVol High Volume Cascade Impactor and ELISA analyses (May through August). Associations between the 2 pollen variables and daily health scores (dichotomized based on within-person 75th percentiles) were assessed using generalized estimating equation logistic models and with asthma hospital admissions using Poisson regression models. RESULTS: Daily pollen counts and Phl p 5 levels were each positively associated with reporting a high combined symptom and medication health score in separate models. However, in mutually adjusted models including terms for both pollen counts and Phl p 5 levels, associations remained for Phl p 5 levels (odds ratio [95% CI]: 1.18 [1.12, 1.24]), but were heavily attenuated for pollen counts (odds ratio [95% CI]: 1.00 [0.93, 1.07]). Similar trends were not observed for asthma hospital admissions in London. CONCLUSIONS: Grass allergen (Phl p 5) levels are more consistently associated with allergic respiratory symptoms than grass pollen counts.


Assuntos
Asma , Rinite Alérgica Sazonal , Rinite Alérgica , Adulto , Humanos , Rinite Alérgica Sazonal/epidemiologia , Pólen , Alérgenos , Poaceae , Asma/epidemiologia , Proteínas de Plantas/análise
4.
Allergy ; 79(7): 1893-1907, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38573073

RESUMO

BACKGROUND: Extracellular vesicles (EVs) have been implicated in the pathogenesis of asthma, however, how EVs contribute to immune dysfunction and type 2 airway inflammation remains incompletely understood. We aimed to elucidate roles of airway EVs and their miRNA cargo in the pathogenesis of NSAID-exacerbated respiratory disease (N-ERD), a severe type 2 inflammatory condition. METHODS: EVs were isolated from induced sputum or supernatants of cultured nasal polyp or turbinate tissues of N-ERD patients or healthy controls by size-exclusion chromatography and characterized by particle tracking, electron microscopy and miRNA sequencing. Functional effects of EV miRNAs on gene expression and mediator release by human macrophages or normal human bronchial epithelial cells (NHBEs) were studied by RNA sequencing, LC-MS/MS and multiplex cytokine assays. RESULTS: EVs were highly abundant in secretions from the upper and lower airways of N-ERD patients. N-ERD airway EVs displayed profoundly altered immunostimulatory capacities and miRNA profiles compared to airway EVs of healthy individuals. Airway EVs of N-ERD patients, but not of healthy individuals induced inflammatory cytokine (GM-CSF and IL-8) production by NHBEs. In macrophages, N-ERD airway EVs exhibited an impaired potential to induce cytokine and prostanoid production, while enhancing M2 macrophage activation. Let-7 family miRNAs were highly enriched in sputum EVs from N-ERD patients and mimicked suppressive effects of N-ERD EVs on macrophage activation. CONCLUSION: Aberrant airway EV miRNA profiles may contribute to immune dysfunction and chronic type 2 inflammation in N-ERD. Let-7 family miRNAs represent targets for correcting aberrant macrophage activation and mediator responses in N-ERD.


Assuntos
Anti-Inflamatórios não Esteroides , Vesículas Extracelulares , Macrófagos , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , MicroRNAs/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Anti-Inflamatórios não Esteroides/efeitos adversos , Citocinas/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/genética , Adulto
5.
Allergy ; 79(7): 1844-1857, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38798015

RESUMO

BACKGROUND: The rise in asthma has been linked to different environmental and lifestyle factors including dietary habits. Whether dietary salt contributes to asthma incidence, remains controversial. We aimed to investigate the impact of higher salt intake on asthma incidence in humans and to evaluate underlying mechanisms using mouse models. METHODS: Epidemiological research was conducted using the UK Biobank Resource. Data were obtained from 42,976 participants with a history of allergies. 24-h sodium excretion was estimated from spot urine, and its association with asthma incidence was assessed by Cox regression, adjusting for relevant covariates. For mechanistic studies, a mouse model of mite-induced allergic airway inflammation (AAI) fed with high-salt diet (HSD) or normal-salt chow was used to characterize disease development. The microbiome of lung and feces (as proxy for gut) was analyzed via 16S rRNA gene based metabarcoding approach. RESULTS: In humans, urinary sodium excretion was directly associated with asthma incidence among females but not among males. HSD-fed female mice displayed an aggravated AAI characterized by increased levels of total IgE, a TH2-TH17-biased inflammatory cell infiltration accompanied by upregulation of osmosensitive stress genes. HSD induced distinct changes in serum short chain fatty acids and in both gut and lung microbiome, with a lower Bacteroidetes to Firmicutes ratio and decreased Lactobacillus relative abundance in the gut, and enriched members of Gammaproteobacteria in the lung. CONCLUSIONS: High dietary salt consumption correlates with asthma incidence in female adults with a history of allergies. Female mice revealed HSD-induced T-cell lung profiles accompanied by alterations of gut and lung microbiome.


Assuntos
Asma , Cloreto de Sódio na Dieta , Animais , Asma/etiologia , Asma/imunologia , Camundongos , Humanos , Feminino , Masculino , Cloreto de Sódio na Dieta/efeitos adversos , Modelos Animais de Doenças , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microbioma Gastrointestinal , Adulto , Pessoa de Meia-Idade , Microbiota , Incidência
6.
EMBO Rep ; 23(6): e54305, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527514

RESUMO

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.


Assuntos
COVID-19 , SARS-CoV-2 , Proteína ADAM10/genética , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/genética , Enzima de Conversão de Angiotensina 2 , Fusão Celular , Humanos , Pulmão , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteases , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
7.
Allergy ; 78(5): 1218-1233, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36424672

RESUMO

BACKGROUND: Dietary carbohydrates and fats are intrinsically correlated within the habitual diet. We aimed to disentangle the associations of starch and sucrose from those of fat, in relation to allergic sensitization, asthma and rhinoconjuctivitis prevalence in humans, and to investigate underlying mechanisms using murine models. METHODS: Epidemiological data from participants of two German birth cohorts (age 15) were used in logistic regression analyses testing cross-sectional associations of starch and sucrose (and their main dietary sources) with aeroallergen sensitization, asthma and rhinoconjunctivitis, adjusting for correlated fats (saturated, monounsaturated, omega-6 and omega-3 polyunsaturated) and other covariates. For mechanistic insights, murine models of aeroallergen-induced allergic airway inflammation (AAI) fed with a low-fat-high-sucrose or -high-starch versus a high-fat diet were used to characterize and quantify disease development. Metabolic and physiologic parameters were used to track outcomes of dietary interventions and cellular and molecular responses to monitor the development of AAI. Oxidative stress biomarkers were measured in murine sera or lung homogenates. RESULTS: We demonstrate a direct association of dietary sucrose with asthma prevalence in males, while starch was associated with higher asthma prevalence in females. In mice, high-carbohydrate feeding, despite scant metabolic effects, aggravated AAI compared to high-fat in both sexes, as displayed by humoral response, mucus hypersecretion, lung inflammatory cell infiltration and TH 2-TH 17 profiles. Compared to high-fat, high-carbohydrate intake was associated with increased pulmonary oxidative stress, signals of metabolic switch to glycolysis and decreased systemic anti-oxidative capacity. CONCLUSION: High consumption of digestible carbohydrates is associated with an increased prevalence of asthma in humans and aggravated lung allergic inflammation in mice, involving oxidative stress-related mechanisms.


Assuntos
Asma , Pneumonia , Masculino , Feminino , Humanos , Camundongos , Animais , Adolescente , Carboidratos da Dieta/farmacologia , Prevalência , Estudos Transversais , Asma/epidemiologia , Asma/etiologia , Pulmão , Inflamação , Amido/farmacologia , Sacarose/farmacologia
8.
J Allergy Clin Immunol ; 149(6): 2078-2090, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34974067

RESUMO

BACKGROUND: Infectious agents can reprogram or "train" macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type 2 inflammatory conditions such as allergic asthma was not known. OBJECTIVE: We sought to decipher macrophage-trained immunity in allergic asthma. METHODS: We used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation in mice, and an in vitro training setup to analyze persistent changes in macrophage eicosanoid, cytokine, and chemokine production as well as the underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or metabolic flux analysis and liquid chromatography-tandem mass spectrometry analysis, respectively. RESULTS: We found that macrophages differentiated from bone marrow or blood monocyte progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type 2 imprint, which shifted toward a classical inflammatory training over time. HDM-induced allergic airway inflammation elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl peptide receptor 2-TNF-2-HG-PGE2/PGE2 receptor 2 axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow-derived macrophages from HDM-allergic mice. CONCLUSION: Allergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type 2 airway inflammation and thus represents a target for asthma therapy.


Assuntos
Asma , Hipersensibilidade , Animais , Dermatophagoides pteronyssinus , Modelos Animais de Doenças , Humanos , Inflamação , Macrófagos , Camundongos , Prostaglandinas E/metabolismo , Pyroglyphidae
9.
Allergy ; 77(3): 767-777, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343347

RESUMO

The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.


Assuntos
Citocinas , Imunidade , Citocinas/metabolismo , Humanos , Secretoglobinas/metabolismo
10.
Allergy ; 77(8): 2482-2497, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35060125

RESUMO

BACKGROUND: The rates of obesity, its associated diseases, and allergies are raising at alarming rates in most countries. House dust mites (HDM) are highly allergenic and exposure often associates with an urban sedentary indoor lifestyle, also resulting in obesity. The aim of this study was to investigate the epidemiological association and physiological impact of lung inflammation on obesity and glucose homeostasis. METHODS: Epidemiological data from 2207 adults of the population-based KORA FF4 cohort were used to test associations between asthma and rhinitis with metrics of body weight and insulin sensitivity. To obtain functional insights, C57BL/6J mice were intranasally sensitized and challenged with HDM and simultaneously fed with either low-fat or high-fat diet for 12 weeks followed by a detailed metabolic and biochemical phenotyping of the lung, liver, and adipose tissues. RESULTS: We found a direct association of asthma with insulin resistance but not body weight in humans. In mice, co-development of obesity and HDM-induced lung inflammation attenuated inflammation in lung and perigonadal fat, with little impact on body weight, but small shifts in the composition of gut microbiota. Exposure to HDM improved glucose tolerance, reduced hepatosteatosis, and increased energy expenditure and basal metabolic rate. These effects associate with increased activity of thermogenic adipose tissues independent of uncoupling protein 1. CONCLUSIONS: Asthma associates with insulin resistance in humans, but HDM challenge results in opposing effects on glucose homeostasis in mice due to increased energy expenditure, reduced adipose inflammation, and hepatosteatosis.


Assuntos
Asma , Resistência à Insulina , Pneumonia , Adulto , Animais , Asma/epidemiologia , Asma/etiologia , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Pyroglyphidae
11.
Allergy ; 77(3): 856-869, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34460953

RESUMO

BACKGROUND: Children with asthma have impaired production of interleukin (IL) 37; in mice, IL-37 reduces hallmarks of experimental allergic asthma (EAA). However, it remains unclear how IL-37 exerts its inhibitory properties in asthma. This study aimed to identify the mechanism(s) by which IL-37 controls allergic inflammation. METHODS: IL-37 target cells were identified by single-cell RNA-seq of IL-1R5 and IL-1R8. Airway tissues were isolated by laser-capture microdissection and examined by microarray-based gene expression analysis. Mononuclear cells (MNC) and airway epithelial cells (AECs) were isolated and stimulated with allergen, IL-1ß, or IL-33 together with recombinant human (rh) IL-37. Wild-type, IL-1R1- and IL-33-deficient mice with EAA were treated with rhIL-37. IL-1ß, IL-33, and IL-37 levels were determined in sputum and nasal secretions from adult asthma patients without glucocorticoid therapy. RESULTS: IL-37 target cells included AECs, T cells, and dendritic cells. In mice with EAA, rhIL-37 led to differential expression of >90 genes induced by IL-1ß and IL-33. rhIL-37 reduced production of Th2 cytokines in allergen-activated MNCs from wild-type but not from IL-1R1-deficient mice and inhibited IL-33-induced Th2 cytokine release. Furthermore, rhIL-37 attenuated IL-1ß- and IL-33-induced pro-inflammatory mediator expression in murine AEC cultures. In contrast to wild-type mice, hIL-37 had no effect on EAA in IL-1R1- or IL-33-deficient mice. We also observed that expression/production ratios of both IL-1ß and IL-33 to IL-37 were dramatically increased in asthma patients compared to healthy controls. CONCLUSION: IL-37 downregulates allergic airway inflammation by counterbalancing the disease-amplifying effects of IL-1ß and IL-33.


Assuntos
Asma , Interleucina-33 , Alérgenos , Animais , Asma/metabolismo , Citocinas , Modelos Animais de Doenças , Humanos , Inflamação , Pulmão/metabolismo , Camundongos , Células Th2
12.
Allergy ; 77(3): 907-919, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287971

RESUMO

BACKGROUND: Native allergen extracts or chemically modified allergoids are routinely used to induce allergen tolerance in allergen-specific immunotherapy (AIT), although mechanistic side-by-side studies are rare. It is paramount to balance optimal dose and allergenicity to achieve efficacy warranting safety. AIT safety and efficacy could be addressed by allergen dose reduction and/or use of allergoids and immunostimulatory adjuvants, respectively. In this study, immunological effects of experimental house dust mite (HDM) AIT were investigated applying high-dose HDM extract and low-dose HDM allergoids with and without the adjuvants microcrystalline tyrosine (MCT) and monophosphoryl lipid A (MPL) in a murine model of HDM allergy. METHODS: Cellular, humoral, and clinical effects of the different AIT strategies were assessed applying a new experimental AIT model of murine allergic asthma based on physiological, adjuvant-free intranasal sensitization followed by subcutaneous AIT. RESULTS: While low-dose allergoid and high-dose extract AIT demonstrated comparable potency to suppress allergic airway inflammation and Th2-type cytokine secretion of lung-resident lymphocytes and draining lymph node cells, low-dose allergoid AIT was less effective in inducing a potentially protective IgG1 response. Combining low-dose allergoid AIT with MCT or MCT and dose-adjusted MPL promoted Th1-inducing mechanisms and robust B-cell activation counterbalancing the allergic Th2 immune response. CONCLUSION: Low allergen doses induce cellular and humoral mechanisms counteracting Th2-driven inflammation by using allergoids and dose-adjusted adjuvants. In light of safety and efficacy improvement, future therapeutic approaches may use low-dose allergoid strategies to drive cellular tolerance and adjuvants to modulate humoral responses.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade , Adjuvantes Imunológicos , Alérgenos , Alergoides , Animais , Antígenos de Dermatophagoides , Humanos , Hipersensibilidade/terapia , Inflamação , Camundongos , Extratos Vegetais , Pyroglyphidae
13.
Environ Res ; 211: 112968, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35240115

RESUMO

Pollen related allergic diseases have been increasing for decades. The reasons for this increase are unknown, but environmental pollution like diesel exhaust seem to play a role. While previous studies explored the effects of pollen extracts, we studied here for the first time priming effects of diesel exhaust on native pollen exposure using a novel experimental setup. METHODS: Human bronchial epithelial BEAS-2B cells were exposed to native birch pollen (real life intact pollen, not pollen extracts) at the air-liquid interface (pollen-ALI). BEAS-2B cells were also pre-exposed in a diesel-ALI to diesel CAST for 2 h (a model for diesel exhaust) and then to pollen in the pollen-ALI 24 h later. Effects were analysed by genome wide transcriptome analysis after 2 h 25 min, 6 h 50 min and 24 h. Selected genes were confirmed by qRT-PCR. RESULTS: Bronchial epithelial cells exposed to native pollen showed the highest transcriptomic changes after about 24 h. About 3157 genes were significantly up- or down-regulated for all time points combined. After pre-exposure to diesel exhaust the maximum reaction to pollen had shifted to about 2.5 h after exposure, plus the reaction to pollen was desensitised as only 560 genes were differentially regulated. Only 97 genes were affected synergistically. Of these, enrichment analysis showed that genes involved in immune and inflammatory response were involved. CONCLUSION: Diesel exhaust seems to prime cells to react more rapidly to native pollen exposure, especially inflammation related genes, a factor known to facilitate the development of allergic sensitization. The marker genes here detected could guide studies in humans when investigating whether modern and outdoor diesel exhaust exposure is still detrimental for the development of allergic disease.


Assuntos
Pólen , Emissões de Veículos , Células Epiteliais , Humanos , Inflamação , Extratos Vegetais/farmacologia , Emissões de Veículos/toxicidade
14.
J Allergy Clin Immunol ; 147(2): 587-599, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32540397

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is a chronic inflammatory condition, which is driven by an aberrant arachidonic acid metabolism. Macrophages are major producers of arachidonic acid metabolites and subject to metabolic reprogramming, but they have been neglected in N-ERD. OBJECTIVE: This study sought to elucidate a potential metabolic and epigenetic macrophage reprogramming in N-ERD. METHODS: Transcriptional, metabolic, and lipid mediator profiles in macrophages from patients with N-ERD and healthy controls were assessed by RNA sequencing, Seahorse assays, and LC-MS/MS. Metabolites in nasal lining fluid, sputum, and plasma from patients with N-ERD (n = 15) and healthy individuals (n = 10) were quantified by targeted metabolomics analyses. Genome-wide methylomics were deployed to define epigenetic mechanisms of macrophage reprogramming in N-ERD. RESULTS: This study shows that N-ERD monocytes/macrophages exhibit an overall reduction in DNA methylation, aberrant metabolic profiles, and an increased expression of chemokines, indicative of a persistent proinflammatory activation. Differentially methylated regions in N-ERD macrophages included genes involved in chemokine signaling and acylcarnitine metabolism. Acylcarnitines were increased in macrophages, sputum, nasal lining fluid, and plasma of patients with N-ERD. On inflammatory challenge, N-ERD macrophages produced increased levels of acylcarnitines, proinflammatory arachidonic acid metabolites, cytokines, and chemokines as compared to healthy macrophages. CONCLUSIONS: Together, these findings decipher a proinflammatory metabolic and epigenetic reprogramming of macrophages in N-ERD.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Asma/imunologia , Macrófagos/imunologia , Pólipos Nasais/imunologia , Anti-Inflamatórios não Esteroides/imunologia , Asma/induzido quimicamente , Humanos , Memória Imunológica/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Pólipos Nasais/induzido quimicamente
15.
Clin Exp Allergy ; 51(12): 1577-1591, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34514658

RESUMO

BACKGROUND: Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS: Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2  levels were measured using ELISA. RESULTS: Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2  levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS: While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.


Assuntos
MicroRNAs , Rinite Alérgica , Alérgenos , Dessensibilização Imunológica , Humanos , Imunidade Inata , Linfócitos , MicroRNAs/genética , Prostaglandinas , Receptores de Prostaglandina/genética , Escarro
16.
Glob Chang Biol ; 27(22): 5934-5949, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363285

RESUMO

Climate change impacts on the structure and function of ecosystems will worsen public health issues like allergic diseases. Birch trees (Betula spp.) are important sources of aeroallergens in Central and Northern Europe. Birches are vulnerable to climate change as these trees are sensitive to increased temperatures and summer droughts. This study aims to examine the effect of climate change on airborne birch pollen concentrations in Central Europe using Bavaria in Southern Germany as a case study. Pollen data from 28 monitoring stations in Bavaria were used in this study, with time series of up 30 years long. An integrative approach was used to model airborne birch pollen concentrations taking into account drivers influencing birch tree abundance and birch pollen production and projections made according to different climate change and socioeconomic scenarios. Birch tree abundance is projected to decrease in parts of Bavaria at different rates, depending on the climate scenario, particularly in current centres of the species distribution. Climate change is expected to result in initial increases in pollen load but, due to the reduction in birch trees, the amount of airborne birch pollen will decrease at lower altitudes. Conversely, higher altitude areas will experience expansions in birch tree distribution and subsequent increases in airborne birch pollen in the future. Even considering restrictions for migration rates, increases in pollen load are likely in Southwestern areas, where positive trends have already been detected during the last three decades. Integrating models for the distribution and abundance of pollen sources and the drivers that control birch pollen production allowed us to model airborne birch pollen concentrations in the future. The magnitude of changes depends on location and climate change scenario.


Assuntos
Betula , Mudança Climática , Alérgenos , Ecossistema , Pólen
17.
Allergy ; 76(8): 2461-2474, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33528894

RESUMO

BACKGROUND: While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS: We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS: Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS: Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.


Assuntos
Dessensibilização Imunológica , Rinite Alérgica Sazonal , Uteroglobina/metabolismo , Alérgenos , Humanos , Sistema Respiratório
18.
Allergy ; 76(6): 1661-1678, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33128813

RESUMO

In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post-transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.


Assuntos
Asma , Dermatite Atópica , MicroRNAs , Rinite Alérgica , Animais , Asma/genética , Camundongos , MicroRNAs/genética , Sistema Respiratório , Rinite Alérgica/genética
19.
Allergy ; 76(4): 1158-1172, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32794228

RESUMO

BACKGROUND: Atopic dermatitis (AD) is the most common inflammatory skin disease in children, with 30% of all those diagnosed developing chronic or relapsing disease by adolescence. Such disease persistence cannot yet be predicted. The aim of the present study was to predict the natural course of AD using clinical parameters and serum proteins. METHODS: Sera of 144 children with AD (age 0-3 years) were analyzed for IgE and 33 cytokines, chemokines, and growth factors. Patient disease course until the age of 7 years was assessed retrospectively. Unsupervised k-means clustering was performed to define disease endotypes. Identified factors associated with AD persistence at the age of 7 years were validated in children with AD in an independent cohort (LISA Munich; n = 168). Logistic regression and XGBoosting methods followed by cross-validation were applied to predict individual disease outcomes. RESULTS: Three distinct endotypes were found in infancy, characterized by a unique inflammatory signature. Factors associated with disease persistence were disease score (SCORAD), involvement of the limbs, flexural lesion distribution at the age of 3 years, allergic comorbidities, and disease exacerbation by the trigger factors stress, pollen exposure, and change in weather. Persistence was predicted with a sensitivity of 81.8% and a specificity of 82.4%. Factors with a high impact on the prediction of persistence were SCORAD at the age of 3 years, trigger factors, and low VEGF serum levels. CONCLUSION: Atopic dermatitis in infancy comprises three immunological endotypes. Disease persistence can be predicted using serum cytokines and clinical variables.


Assuntos
Dermatite Atópica , Eczema , Adolescente , Proteínas Sanguíneas , Criança , Pré-Escolar , Citocinas , Dermatite Atópica/diagnóstico , Dermatite Atópica/epidemiologia , Humanos , Lactente , Recém-Nascido , Estudos Retrospectivos , Índice de Gravidade de Doença
20.
Allergy ; 76(9): 2827-2839, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33969495

RESUMO

BACKGROUND: Studies show that proallergic TH 2 cells decrease after successful allergen-specific immunotherapy (AIT). It is likely that iatrogenic administration of allergens drives these cells to exhaustion due to chronic T-cell receptor stimulation. This study aimed to investigate the exhaustion of T cells in connection with allergen exposure during AIT in mice and two independent patient cohorts. METHODS: OVA-sensitized C57BL/6J mice were challenged and treated with OVA, and the development of exhaustion in local and systemic TH 2 cells was analyzed. In patients, the expression of exhaustion-associated surface markers on TH 2 cells was evaluated using flow cytometry in a cross-sectional grass pollen allergy cohort with and without AIT. The treatment effect was further studied in PBMC collected from a prospective long-term AIT cohort. RESULTS: The exhaustion-associated surface markers CTLA-4 and PD-1 were significantly upregulated on TH 2 cells upon OVA aerosol exposure in OVA-allergic compared to non-allergic mice. CTLA-4 and PD-1 decreased after AIT, in particular on the surface of local lung TH 2 cells. Similarly, CTLA-4 and PD-1 expression was enhanced on TH 2 cells from patients with allergic rhinitis with an even stronger effect in those with concomitant asthma. Using an unbiased Louvain clustering analysis, we discovered a late-differentiated TH 2 population expressing both markers that decreased during up-dosing but persisted long term during the maintenance phase. CONCLUSIONS: This study shows that allergen exposure promotes CTLA-4 and PD-1 expression on TH 2 cells and that the dynamic change in frequencies of exhausted TH 2 cells exhibits a differential pattern during the up-dosing versus the maintenance phases of AIT.


Assuntos
Dessensibilização Imunológica , Leucócitos Mononucleares , Alérgenos , Animais , Estudos Transversais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA