RESUMO
A multitude of microtubule-based motors drives diverse forms of intracellular transport and generates forces for maintaining the dynamic structural organization of cytoplasm. Recent work has illuminated the functions and mechanisms of action of some microtubule motors, and appears to have uncovered unforseen functional interactions between tubulin-based and actin-based systems.
Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Divisão Celular/fisiologia , Citoplasma/metabolismo , Dineínas/metabolismo , Membranas Intracelulares/metabolismo , Cinesinas/genética , Movimento , Família Multigênica , Organelas/metabolismo , Peptídeos/metabolismo , Tubulina (Proteína)/metabolismoRESUMO
The movement of chromosomes during mitosis occurs on a bipolar, microtubule-based protein machine, the mitotic spindle. It has long been proposed that poleward chromosome movements that occur during prometaphase and anaphase A are driven by the microtubule motor cytoplasmic dynein, which binds to kinetochores and transports them toward the minus ends of spindle microtubules. Here we evaluate this hypothesis using time-lapse confocal microscopy to visualize, in real time, kinetochore and chromatid movements in living Drosophila embryos in the presence and absence of specific inhibitors of cytoplasmic dynein. Our results show that dynein inhibitors disrupt the alignment of kinetochores on the metaphase spindle equator and also interfere with kinetochore- and chromatid-to-pole movements during anaphase A. Thus, dynein is essential for poleward chromosome motility throughout mitosis in Drosophila embryos.
Assuntos
Cromossomos/fisiologia , Drosophila/embriologia , Dineínas/fisiologia , Mitose/fisiologia , Anáfase/fisiologia , Animais , Animais Geneticamente Modificados , Cromossomos/efeitos dos fármacos , Citoplasma/fisiologia , Drosophila/genética , Drosophila/fisiologia , Complexo Dinactina , Dineínas/antagonistas & inibidores , Proteínas de Fluorescência Verde , Humanos , Cinetocoros/efeitos dos fármacos , Cinetocoros/fisiologia , Proteínas Luminescentes/genética , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/farmacologia , Proteínas Motores Moleculares/fisiologia , Movimento/efeitos dos fármacos , Movimento/fisiologia , Proteínas Recombinantes/genética , Fuso Acromático/fisiologiaRESUMO
The positioning of centrosomes, or microtubule-organizing centres, within cells plays a critical part in animal development. Here we show that, in Drosophila embryos undergoing mitosis, the positioning of centrosomes within bipolar spindles and between daughter nuclei is determined by a balance of opposing forces generated by a bipolar kinesin motor, KLP61F, that is directed to microtubule plus ends, and a carboxy-terminal kinesin motor, Ncd, that is directed towards microtubule minus ends. This activity maintains the spacing between separated centrosomes during prometaphase and metaphase, and repositions centrosomes and daughter nuclei during late anaphase and telophase. Surprisingly, we do not observe a function for KLP61F in the initial separation of centrosomes during prophase. Our data indicate that KLP61F and Ncd may function by crosslinking and sliding antiparallel spindle microtubules in relation to one another, allowing KLP61F to push centrosomes apart and Ncd to pull them together.
Assuntos
Centrossomo/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Embrião não Mamífero/fisiologia , Cinesinas/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Mitose/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Animais Geneticamente Modificados , Centrossomo/ultraestrutura , Embrião não Mamífero/ultraestrutura , Proteínas de Fluorescência Verde , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microtúbulos/ultraestrutura , Modelos Biológicos , Fuso Acromático/fisiologia , Fuso Acromático/ultraestruturaRESUMO
Eukaryotes contain a superfamily of microtubule-based motor proteins comprising kinesin and a number of related proteins that are thought to participate in various forms of intracellular motility, including cell division and organelle transport. The role of various members of the kinesin superfamily in chromosome segregation and spindle morphogenesis was described in TCB last year in parts of a series on cytoplasmic motor proteins. In this brief update, Helen Epstein and Jon Scholey comment on new findings that have improved our understanding of the functions of kinesin-related proteins in mitosis and meiosis.
RESUMO
The movements of eukaryotic cell division depend upon the conversion of chemical energy into mechanical work, which in turn involves the actions of motor proteins, molecular transducers that generate force and motion relative cytoskeletal elements. In animal cells, microtubule-based motor proteins of the mitotic apparatus are involved in segregating chromosomes and perhaps in organizing the mitotic apparatus itself, while microfilament-based motors in the contractile ring generate the forces that separate daughter cells during cytokinesis. This review outlines recent advances in our understanding of the roles of molecular motors in mitosis and cytokinesis.
RESUMO
Members of the kinesin family of motor proteins are assembled from kinesin-related polypeptides that share conserved 'motor' domains linked to diverse 'tail' domains. Recent work suggests that tail diversity underlies the differences in quaternary structure observed among native kinesin holoenzymes.
RESUMO
Heterotrimeric kinesin-II is a plus end- directed microtubule (MT) motor protein consisting of distinct heterodimerized motor subunits associated with an accessory subunit. To probe the intracellular transport functions of kinesin-II, we microinjected fertilized sea urchin eggs with an anti-kinesin-II monoclonal antibody, and we observed a dramatic inhibition of ciliogenesis at the blastula stage characterized by the assembly of short, paralyzed, 9+0 ciliary axonemes that lack central pair MTs. Control embryos show no such defect and form swimming blastulae with normal, motile, 9+2 cilia that contain kinesin-II as detected by Western blotting. Injection of anti-kinesin-II into one blastomere of a two-cell embryo leads to the development of chimeric blastulae covered on one side with short, paralyzed cilia, and on the other with normal, beating cilia. We observed a unimodal length distribution of short cilia on anti-kinesin-II-injected embryos corresponding to the first mode of the trimodal distribution of ciliary lengths observed for control embryos. This short mode may represent a default ciliary assembly intermediate. We hypothesize that kinesin-II functions during ciliogenesis to deliver ciliary components that are required for elongation of the assembly intermediate and for formation of stable central pair MTs. Thus, kinesin-II plays a critical role in embryonic development by supporting the maturation of nascent cilia to generate long motile organelles capable of producing the propulsive forces required for swimming and feeding.
Assuntos
Blastocisto/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Cromossomos/fisiologia , Cílios/fisiologia , Embrião não Mamífero/fisiologia , Proteínas Musculares/fisiologia , Animais , Anticorpos/farmacologia , Blastocisto/citologia , Blastocisto/ultraestrutura , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/isolamento & purificação , Ciclo Celular , Quimera , Cromossomos/ultraestrutura , Cílios/ultraestrutura , Cinesinas/fisiologia , Microscopia Eletrônica , Movimento , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/isolamento & purificação , Ouriços-do-Mar/embriologiaRESUMO
Previous studies suggest that kinesin heavy chain (KHC) is associated with ER-derived membranes that accumulate in the mitotic apparatus in cells of early sea urchin embryos (Wright, B. D., J. H. Henson, K. P. Wedaman, P. J. Willy, J. N. Morand, and J. M. Scholey. 1991. J. Cell Biol. 113:817-833). Here, we report that the microinjection of KHC-specific antibodies into these cells has no effect on mitosis or ER membrane organization, even though one such antibody, SUK4, blocks kinesin-driven motility in vitro and in mammalian cells. Microinjected SUK4 was localized to early mitotic figures, suggesting that it is able to access kinesin in spindles. In contrast to KHC-specific antibodies, two antibodies that react with kinesin-like proteins (KLPs), namely CHO1 and HD, disrupted mitosis and prevented subsequent cell division. CHO1 is thought to exert this effect by blocking the activity of a 110-kD KLP. The relevant target of HD, which was raised against the KHC motor domain, is unknown; HD may disrupt mitosis by interfering with an essential spindle KLP but not with KHC itself, as preabsorption of HD with KHC did not alter its ability to block mitosis. These data indicate that some KLPs have essential mitotic functions in early sea urchin embryos but KHC itself does not.
Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos/farmacologia , Divisão Celular/fisiologia , Embrião não Mamífero/citologia , Cinesinas/fisiologia , Ouriços-do-Mar/embriologia , Animais , Anticorpos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Feminino , Fertilização , Cinesinas/imunologia , Masculino , Microinjeções , Oócitos/efeitos dos fármacos , Oócitos/fisiologiaRESUMO
We have prepared and characterized seven mouse monoclonal antibodies (SUK 1-7) to the 130-kD heavy chain of sea urchin egg kinesin. On immunoblots, SUK 3 and SUK 4 cross-reacted with Drosophila embryo 116-kD heavy chains, and SUK 4, SUK 5, SUK 6, and SUK 7 bound to the 120-kD heavy chains of bovine brain kinesin. Three out of seven monoclonal antikinesins (SUK 4, SUK 6, and SUK 7) caused a dose-dependent inhibition of sea urchin egg kinesin-induced microtubule translocation, whereas the other four monoclonal antibodies had no detectable effect on this motility. The inhibitory monoclonal antibodies (SUK 4, SUK 6, and SUK 7) appear to bind to spatially related sites on an ATP-sensitive microtubule binding 45-kD chymotryptic fragment of the 130-kD heavy chain, whereas SUK 2 binds to a spatially distinct site. None of the monoclonal antikinesins inhibited the microtubule activated MgATPase activity of kinesin, suggesting that SUK 4, SUK 6, and SUK 7 uncouple this MgATPase activity from motility.
Assuntos
Anticorpos Monoclonais/imunologia , ATPase de Ca(2+) e Mg(2+)/imunologia , Proteínas dos Microtúbulos/imunologia , Microtúbulos/fisiologia , Proteínas do Tecido Nervoso/imunologia , Animais , Ligação Competitiva , ATPase de Ca(2+) e Mg(2+)/metabolismo , Cromatografia em Gel , Reações Cruzadas , Eletroforese em Gel de Poliacrilamida , Hibridomas , Immunoblotting , Cinesinas , Camundongos , Proteínas dos Microtúbulos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Radioimunoensaio , Ouriços-do-MarRESUMO
The mechanical events of mitosis depend on the action of microtubules and mitotic motors, but whether these spindle components act alone or in concert with a spindle matrix is an important question.
Assuntos
Citoesqueleto/metabolismo , Proteínas de Drosophila , Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Associadas à Matriz Nuclear , Fuso Acromático/metabolismo , Animais , Proteínas Cromossômicas não Histona/metabolismo , Drosophila , Cinetocoros/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Nucleares/metabolismoRESUMO
Kinesin was previously immunolocalized to mitotic apparatuses (MAs) of early sea urchin blastomeres (Scholey, J.M., M.E. Porter, P.M. Grissom, and J.R. McIntosh. 1985. Nature [Lond.]. 318:483-486). Here we report evidence that this MA-associated motor protein is a conventional membrane-bound kinesin, rather than a kinesin-like protein. Our evidence includes the observation that the deduced amino acid sequence of this sea urchin kinesin heavy chain is characteristic of a conventional kinesin. In addition, immunolocalizations using antibodies that distinguish kinesin from kinesin-like proteins confirm that conventional kinesin is concentrated in MAs. Finally, our immunocytochemical data further suggest that conventional kinesin is associated with membranes which accumulate in MAs and interphase asters of early sea urchin embryos, and with vesicles that are distributed in the perinuclear region of coelomocytes. Thus kinesin may function as a microtubule-based vesicle motor in some MAs, as well as in the interphase cytoplasm.
Assuntos
Adenosina Trifosfatases/metabolismo , Membranas Intracelulares/metabolismo , Fuso Acromático/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Western Blotting , Calsequestrina/metabolismo , Compartimento Celular , Fase de Clivagem do Zigoto , Clonagem Molecular , DNA/genética , Interfase , Cinesinas , Microtúbulos/metabolismo , Dados de Sequência Molecular , Nocodazol/farmacologia , Cavidade Peritoneal/citologia , Mapeamento por Restrição , Ouriços-do-Mar/citologia , Ouriços-do-Mar/ultraestrutura , Fuso Acromático/ultraestrutura , Tubulina (Proteína)/metabolismoRESUMO
Kinesin and myosin have been proposed to transport intracellular organelles and vesicles to the cell periphery in several cell systems. However, there has been little direct observation of the role of these motor proteins in the delivery of vesicles during regulated exocytosis in intact cells. Using a confocal microscope, we triggered local bursts of Ca2+-regulated exocytosis by wounding the cell membrane and visualized the resulting individual exocytotic events in real time. Different temporal phases of the exocytosis burst were distinguished by their sensitivities to reagents targeting different motor proteins. The function blocking antikinesin antibody SUK4 as well as the stalk-tail fragment of kinesin heavy chain specifically inhibited a slow phase, while butanedione monoxime, a myosin ATPase inhibitor, inhibited both the slow and fast phases. The blockage of Ca2+/calmodulin-dependent protein kinase II with autoinhibitory peptide also inhibited the slow and fast phases, consistent with disruption of a myosin-actin- dependent step of vesicle recruitment. Membrane resealing after wounding was also inhibited by these reagents. Our direct observations provide evidence that in intact living cells, kinesin and myosin motors may mediate two sequential transport steps that recruit vesicles to the release sites of Ca2+-regulated exocytosis, although the identity of the responsible myosin isoform is not yet known. They also indicate the existence of three semistable vesicular pools along this regulated membrane trafficking pathway. In addition, our results provide in vivo evidence for the cargo-binding function of the kinesin heavy chain tail domain.
Assuntos
Cálcio/metabolismo , Vesículas Revestidas/fisiologia , Exocitose , Cinesinas/fisiologia , Miosinas/fisiologia , Óvulo/fisiologia , Espermatozoides/fisiologia , Actinas/fisiologia , Animais , Anticorpos/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Membrana Celular/fisiologia , Clonagem Molecular , Diacetil/análogos & derivados , Diacetil/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Cinesinas/antagonistas & inibidores , Cinética , Masculino , Miosinas/antagonistas & inibidores , Óvulo/citologia , Proteínas Recombinantes/metabolismo , Ouriços-do-Mar , Fatores de TempoRESUMO
The heterotrimeric kinesin-II holoenzyme purified from sea urchin (Strongylocentrotus purpuratus) eggs is assembled from two heterodimerized kinesin-related motor subunits of known sequence, together with a third, previously uncharacterized 115-kD subunit, SpKAP115. Using monospecific anti-SpKAP115 antibodies we have accomplished the molecular cloning and sequencing of the SpKAP115 subunit. The deduced sequence predicts a globular 95-kD non-motor "accessory" polypeptide rich in alpha-helical segments that are generally not predicted to form coiled coils. Electron microscopy of individual rotary shadowed kinesin-II holoenzymes also suggests that SpKAP115 is globular, with a somewhat asymmetric morphology. Moreover, the SpKAP115 subunit lies at one end of the 51-nm-long kinesin-II complex, being separated from the two presumptive motor domains by a approximately 26-nm-long rod, in a manner similar to the light chains (KLCs) of kinesin itself. This indicates that SpKAP115 and the KLCs may have analogous functions, yet SpKAP115 does not display significant sequence similarity with the KLCs. The results show that kinesin and kinesin-II are assembled from highly divergent accessory polypeptides together with kinesin related motor subunits (KRPs) containing conserved motor domains linked to divergent tails. Despite the lack of sequence conservation outside the motor domains, there is striking conservation of the ultrastructure of the kinesin and kinesin-II holoenzymes.
Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Cinesinas/biossíntese , Proteínas Musculares/biossíntese , Conformação Proteica , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/isolamento & purificação , Clonagem Molecular , DNA Complementar , Cinesinas/química , Cinesinas/isolamento & purificação , Substâncias Macromoleculares , Microscopia Eletrônica , Modelos Estruturais , Dados de Sequência Molecular , Peso Molecular , Proteínas Musculares/química , Proteínas Musculares/isolamento & purificação , Concentração Osmolar , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ouriços-do-MarRESUMO
The heterotrimeric motor protein, kinesin-II, and its presumptive cargo, can be observed moving anterogradely at 0.7 microm/s by intraflagellar transport (IFT) within sensory cilia of chemosensory neurons of living Caenorhabditis elegans, using a fluorescence microscope-based transport assay (Orozco, J.T., K.P. Wedaman, D. Signor, H. Brown, L. Rose, and J.M. Scholey. 1999. Nature. 398:674). Here, we report that kinesin-II, and two of its presumptive cargo molecules, OSM-1 and OSM-6, all move at approximately 1.1 microm/s in the retrograde direction along cilia and dendrites, which is consistent with the hypothesis that these proteins are retrieved from the distal endings of the cilia by a retrograde transport pathway that moves them along cilia and then dendrites, back to the neuronal cell body. To test the hypothesis that the minus end-directed microtubule motor protein, cytoplasmic dynein, drives this retrograde transport pathway, we visualized movement of kinesin-II and its cargo along dendrites and cilia in a che-3 cytoplasmic dynein mutant background, and observed an inhibition of retrograde transport in cilia but not in dendrites. In contrast, anterograde IFT proceeds normally in che-3 mutants. Thus, we propose that the class DHC1b cytoplasmic dynein, CHE-3, is specifically responsible for the retrograde transport of the anterograde motor, kinesin-II, and its cargo within sensory cilia, but not within dendrites.
Assuntos
Transporte Axonal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cílios/metabolismo , Dendritos/metabolismo , Dineínas/metabolismo , Proteínas Musculares/metabolismo , Neurônios Aferentes/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Dineínas/química , Dineínas/genética , Flagelos/metabolismo , Genes de Helmintos/genética , Genes de Helmintos/fisiologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Cinesinas , Cinética , Microscopia de Fluorescência , Proteínas Motores Moleculares/metabolismo , Dados de Sequência Molecular , Mutação/genética , Neurônios Aferentes/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
We have investigated the intracellular roles of an Xklp2-related kinesin motor, KRP(180), in positioning spindle poles during early sea urchin embryonic cell division using quantitative, real-time analysis. Immunolocalization reveals that KRP(180) concentrates on microtubules in the central spindle, but is absent from centrosomes. Microinjection of inhibitory antibodies and dominant negative constructs suggest that KRP(180) is not required for the initial separation of spindle poles, but instead functions to transiently position spindle poles specifically during prometaphase.
Assuntos
Proteínas de Ligação ao Cálcio/isolamento & purificação , Embrião não Mamífero/ultraestrutura , Metáfase , Proteínas Motores Moleculares , Proteínas Musculares/isolamento & purificação , Fuso Acromático/ultraestrutura , Proteínas de Xenopus , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Dimerização , Imunofluorescência , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Musculares/genética , Ouriços-do-Mar , Homologia de Sequência de AminoácidosRESUMO
Previous genetic and biochemical studies have led to the hypothesis that the essential mitotic bipolar kinesin, KLP61F, cross-links and slides microtubules (MTs) during spindle assembly and function. Here, we have tested this hypothesis by immunofluorescence and immunoelectron microscopy (immunoEM). We show that Drosophila embryonic spindles at metaphase and anaphase contain abundant bundles of MTs running between the spindle poles. These interpolar MT bundles are parallel near the poles and antiparallel in the midzone. We have observed that KLP61F motors, phosphorylated at a cdk1/cyclin B consensus domain within the BimC box (BCB), localize along the length of these interpolar MT bundles, being concentrated in the midzone region. Nonphosphorylated KLP61F motors, in contrast, are excluded from the spindle and display a cytoplasmic localization. Immunoelectron microscopy further suggested that phospho-KLP61F motors form cross-links between MTs within interpolar MT bundles. These bipolar KLP61F MT-MT cross-links should be capable of organizing parallel MTs into bundles within half spindles and sliding antiparallel MTs apart in the spindle midzone. Thus we propose that bipolar kinesin motors and MTs interact by a "sliding filament mechanism" during the formation and function of the mitotic spindle.
Assuntos
Proteínas de Drosophila , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Anáfase , Animais , Reagentes de Ligações Cruzadas , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Congelamento , Metáfase , Microscopia Imunoeletrônica , Fosforilação , CoelhosRESUMO
The mitotic spindle assembles into a bipolar, microtubule-based protein machine during prometaphase. One proposed mechanism for this process is "search-and-capture," in which dynamically unstable microtubules (MTs) search space to capture chromosomes. Although existing theoretical estimates suggest that dynamic instability is efficient enough to allow capture within characteristic mitotic timescales, they are limited in scope and do not address the capture times for realistic numbers of chromosomes. Here we used mathematical modeling to explore this issue. We show that without any bias toward the chromosomes, search-and-capture is not efficient enough to explain the typical observed duration of prometaphase. We further analyze search-and-capture in the presence of a spatial gradient of a stabilizing factor that biases MT dynamics toward the chromosomes. We show theoretically that such biased search-and-capture is efficient enough to account for chromosome capture. We also show that additional factors must contribute to accelerate the spindle assembly for cells with large nuclear volumes. We discuss the possibility that a RanGTP gradient introduces a spatial bias into microtubule dynamics and thus improves the efficiency of search-and-capture as a mechanism for spindle assembly.
Assuntos
Cromossomos Humanos/metabolismo , Microtúbulos/metabolismo , Modelos Teóricos , Prometáfase/fisiologia , Fuso Acromático/metabolismo , Biologia Computacional , Simulação por Computador , Células HeLa , Humanos , Cinetocoros/metabolismo , Fatores de Tempo , Proteína ran de Ligação ao GTP/metabolismoRESUMO
Mitotic spindle morphogenesis depends upon the action of microtubules (MTs), motors and the cell cortex. Previously, we proposed that cortical- and MT-based motors acting alone can coordinate early spindle assembly in Drosophila embryos. Here, we tested this model using microscopy of living embryos to analyze spindle pole separation, cortical reorganization, and nuclear dynamics in interphase-prophase of cycles 11-13. We observe that actin caps remain flat as they expand and that furrows do not ingress. As centrosomes separate, they follow a linear trajectory, maintaining a constant pole-to-furrow distance while the nucleus progressively deforms along the elongating pole-pole axis. These observations are incorporated into a model in which outward forces generated by zones of active cortical dynein are balanced by inward forces produced by nuclear elasticity and during cycle 13, by Ncd, which localizes to interpolar MTs. Thus, the force-balance driving early spindle morphogenesis depends upon MT-based motors acting in concert with the cortex and nucleus.
Assuntos
Núcleo Celular/fisiologia , Citoesqueleto/fisiologia , Drosophila/fisiologia , Fuso Acromático/fisiologia , Actinas/fisiologia , Actinas/ultraestrutura , Animais , Ciclo Celular/fisiologia , Centrossomo/fisiologia , Drosophila/embriologia , Drosophila/ultraestrutura , Proteínas de Drosophila/fisiologia , Dineínas/metabolismo , Embrião não Mamífero/fisiologia , Embrião não Mamífero/ultraestrutura , Cinesinas/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares/fisiologia , MorfogêneseRESUMO
Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Células Quimiorreceptoras/metabolismo , Cílios/metabolismo , Cinesinas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Clonagem Molecular , Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Imuno-Histoquímica , Cinesinas/química , Cinesinas/genética , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Neurônios/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Conformação Proteica , Receptores de Superfície Celular , Homologia de Sequência de AminoácidosRESUMO
It is well established that multiple microtubule-based motors contribute to the formation and function of the mitotic spindle, but how the activities of these motors interrelate remains unclear. Here we visualize spindle formation in living Drosophila embryos to show that spindle pole movements are directed by a temporally coordinated balance of forces generated by three mitotic motors, cytoplasmic dynein, KLP61F, and Ncd. Specifically, our findings suggest that dynein acts to move the poles apart throughout mitosis and that this activity is augmented by KLP61F after the fenestration of the nuclear envelope, a process analogous to nuclear envelope breakdown, which occurs at the onset of prometaphase. Conversely, we find that Ncd generates forces that pull the poles together between interphase and metaphase, antagonizing the activity of both dynein and KLP61F and serving as a brake for spindle assembly. During anaphase, however, Ncd appears to have no effect on spindle pole movements, suggesting that its activity is down-regulated at this time, allowing dynein and KLP61F to drive spindle elongation during anaphase B.