RESUMO
Imaging and manipulating individual atoms with submicrometer separation can be instrumental for quantum simulation of condensed matter Hamiltonians and quantum computation with neutral atoms. Here we present an open-source design of a microscope objective for atomic strontium, consisting solely of off-the-shelf lenses, that is diffraction-limited for 461 nm light. A prototype built with a simple stacking design is measured to have a resolution of 0.63(4) µm, which is in agreement with the predicted value. This performance, together with the near diffraction-limited performance for 532 nm light, makes this design useful for both quantum gas microscopes and optical tweezer experiments with strontium. Our microscope can easily be adapted to experiments with other atomic species such as erbium, ytterbium, and dysprosium, as with rubidium Rydberg atoms.
RESUMO
Ultracold Fermi gases with tunable interactions provide a test bed for exploring the many-body physics of strongly interacting quantum systems. Over the past decade, experiments have investigated many intriguing phenomena, and precise measurements of ground-state properties have provided benchmarks for the development of theoretical descriptions. Metastable states in Fermi gases with strong repulsive interactions represent an exciting area of development. The realization of such systems is challenging, because a strong repulsive interaction in an atomic quantum gas implies the existence of a weakly bound molecular state, which makes the system intrinsically unstable against decay. Here we use radio-frequency spectroscopy to measure the complete excitation spectrum of fermionic (40)K impurities resonantly interacting with a Fermi sea of (6)Li atoms. In particular, we show that a well-defined quasiparticle exists for strongly repulsive interactions. We measure the energy and the lifetime of this 'repulsive polaron', and probe its coherence properties by measuring the quasiparticle residue. The results are well described by a theoretical approach that takes into account the finite effective range of the interaction in our system. We find that when the effective range is of the order of the interparticle spacing, there is a substantial increase in the lifetime of the quasiparticles. The existence of such a long-lived, metastable many-body state offers intriguing prospects for the creation of exotic quantum phases in ultracold, repulsively interacting Fermi gases.
RESUMO
Alkaline-earth-metal atoms can exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the (3)P(0) - (3)D(1) transition of the triplet manifold. In the case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.6 µm and a dipole moment of 4.03 D, and there exists a magic wavelength permitting the creation of optical lattices that are identical for the states (3)P(0) and (3)D(1). This interaction enables the realization and study of mixtures of hard-core lattice bosons featuring long-range hopping, with tunable disorder and anisotropy. We derive the many-body master equation, investigate the dynamics of excitation transport, and analyze spectroscopic signatures stemming from coherent long-range interactions and collective dissipation. Our results show that lattice gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and constitute a simple and versatile platform for the exploration of many-body systems with long-range interactions. As such, they represent an alternative to current related efforts employing Rydberg gases, atoms with large magnetic moment, or polar molecules.
RESUMO
We report on the expansion of an ultracold Fermi-Fermi mixture of (6)Li and (40)K under conditions of strong interactions controlled via an interspecies Feshbach resonance. We study the expansion of the mixture after release from the trap and, in a narrow magnetic-field range, we observe two phenomena related to hydrodynamic behavior. The common inversion of the aspect ratio is found to be accompanied by a collective effect where both species stick together and expand jointly despite of their widely different masses. Our work constitutes a major experimental step for a controlled investigation of the many-body physics of this novel strongly interacting quantum system.
RESUMO
We investigate the collisional stability of a sample of 40K atoms immersed in a tunable spin mixture of 6Li atoms. In this three-component Fermi-Fermi mixture, we find very low loss rates in a wide range of interactions as long as molecule formation of 6Li is avoided. The stable fermionic mixture with two resonantly interacting spin states of one species together with another species is a promising system for a broad variety of phenomena in few- and many-body quantum physics.
RESUMO
We present an experimental method to create a single high frequency optical trap for atoms based on an elongated Hermite-Gaussian TEM01 mode beam. This trap results in confinement strength similar to that which may be obtained in an optical lattice. We discuss an optical setup to produce the trapping beam and then detail a method to load a Bose-Einstein Condensate (BEC) into a TEM01 trap. Using this method, we have succeeded in producing individual highly confined lower dimensional condensates.
RESUMO
We report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, (6)Li and (40)K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of various s- and p-wave molecular states and fully characterizes the ground-state scattering properties in any combination of spin states.
RESUMO
We report the direct observation of sub-Poissonian number fluctuation for a degenerate Bose gas confined in an optical trap. Reduction of number fluctuations below the Poissonian limit is observed for average numbers that range from 300 to 60 atoms.
RESUMO
The output of two grating-stabilized external-cavity diode lasers was injected into a semiconductor tapered amplif ier in a master oscillator-power amplif ier (MOPA) configuration. At a wavelength of 671 nm this configuration produced 210 mW of power in a diffraction-limited mode with two frequency components of narrow linewidth. The frequency difference delta was varied from 20 MHz to 12 GHz, while the power ratio of the two components was freely adjustable. For delta < 2 GHz additional frequency sidebands appear in the output of the MOPA. This configuration is a f lexible and simple high-power cw laser source for light with multiple narrow-linewidth frequency components.
RESUMO
We report the observation of coexisting Bose-Einstein condensate (BEC) and Fermi gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li condensate is quasipure and in thermal contact with a 6Li Fermi gas. The lowest common temperature is 0.28 microK approximately 0.2(1)T(C) = 0.2(1)T(F) where T(C) is the BEC critical temperature and T(F) the Fermi temperature. The 7Li condensate has a one-dimensional character.
RESUMO
We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 millimeter is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.