Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110018

RESUMO

Macrocyclic peptides show promise in targeting high-value therapeutically relevant binding sites due to their high affinity and specificity. However, their clinical application is often hindered by low membrane permeability, which limits their effectiveness against intracellular targets. Previous studies focused on peptide conformations in various solvents, leaving a gap in understanding their interactions with and translocation through lipid bilayers. Addressing this, our study explores the membrane interactions of stapled peptides, a subclass of macrocyclic peptides, using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. We conducted ssNMR measurements on ATSP-7041M, a prototypical stapled peptide, to understand its interaction with lipid membranes, leading to an MD-informed model for peptide membrane permeation. Our findings reveal that ATSP-7041M adopts a stable α-helical structure upon membrane binding, facilitated by a cation-π interaction between its phenylalanine side chain and the lipid headgroup. This interaction makes the membrane-bound state energetically favorable, facilitating membrane affinity and insertion. The bound peptide displayed asymmetric insertion depths, with the C-terminus penetrating deeper (approximately 9 Å) than the N-terminus (approximately 4.3 Å) relative to the lipid headgroups. Contrary to expectations, peptide dynamics was not hindered by membrane binding and exhibited rapid motions similar to cell-penetrating peptides. These dynamic interactions and peptide-lipid affinity appear to be crucial for membrane permeation. MD simulations indicated a thermodynamically stable transmembrane conformation of ATSP-7041M, reducing the energy barrier for translocation. Our study offers an in silico view of ATSP-7041M's translocation from the extracellular to the intracellular region, highlighting the significance of peptide-lipid interactions and dynamics in enabling peptide transit through membranes.

2.
Anal Chem ; 96(6): 2464-2473, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306310

RESUMO

Lipid nanoparticles (LNPs) are intricate multicomponent systems widely recognized for their efficient delivery of oligonucleotide cargo to host cells. Gaining insights into the molecular properties of LNPs is crucial for their effective design and characterization. However, analysis of their internal structure at the molecular level presents a significant challenge. This study introduces 31P nuclear magnetic resonance (NMR) methods to acquire structural and dynamic information about the phospholipid envelope of LNPs. Specifically, we demonstrate that the 31P chemical shift anisotropy (CSA) parameters serve as a sensitive indicator of the molecular assembly of distearoylphosphatidylcholine (DSPC) lipids within the particles. An analytical protocol for measuring 31P CSA is developed, which can be implemented using either solution NMR or solid-state NMR, offering wide accessibility and adaptability. The capability of this method is demonstrated using both model DSPC liposomes and real-world pharmaceutical LNP formulations. Furthermore, our method can be employed to investigate the impact of formulation processes and composition on the assembly of specifically LNP particles or, more generally, phospholipid-based delivery systems. This makes it an indispensable tool for evaluating critical pharmaceutical properties such as structural homogeneity, batch-to-batch reproducibility, and the stability of the particles.


Assuntos
Lipossomos , Nanopartículas , Reprodutibilidade dos Testes , Fosfolipídeos , Nanopartículas/química , Espectroscopia de Ressonância Magnética , RNA Interferente Pequeno
3.
Mol Pharm ; 19(9): 3267-3278, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35917158

RESUMO

Antimicrobial preservatives are used as functional excipients in multidose formulations of biological therapeutics to destroy or inhibit the growth of microbial contaminants, which may be introduced by repeatedly administering doses. Antimicrobial agents can also induce the biophysical instability of proteins and peptides, which presents a challenge in optimizing the drug product formulation. Elucidating the structural basis for aggregation aids in understanding the underlying mechanism and can offer valuable knowledge and rationale for designing drug substances and drug products; however, this remains largely unexplored due to the lack of high-resolution characterization. In this work, we utilize solution nuclear magnetic resonance (NMR) as an advanced biophysical tool to study an acylated 31-residue peptide, acyl-peptide A, and its interaction with commonly used antimicrobial agents, benzyl alcohol and m-cresol. Our results suggest that acyl-peptide A forms soluble octamers in the aqueous solution, which tumble slowly due to an increased molecular weight as measured by diffusion ordered spectroscopy and 1H relaxation measurement. The addition of benzyl alcohol does not induce aggregation of acyl-peptide A and has no chemical shift perturbation in 1H-1H NOESY spectra, suggesting no detectable interaction with the peptide. In contrast, the addition of 1% (w/v) m-cresol results in insoluble aggregates composed of 25% (w/w) peptides after a 24-hour incubation at room temperature as quantified by 1H NMR. Interestingly, 1H-13C heteronuclear single-quantum coherence and 1H-1H total correlation experiment spectroscopy have identified m-cresol and peptide interactions at specific residues, including Met, Lys, Glu, and Gln, suggesting that there may be a combination of hydrophobic, hydrogen bonding, and electrostatic interactions with m-cresol driving this phenomenon. These site-specific interactions have promoted the formation of higher-order oligomerization such as dimers and trimers of octamers, eventually resulting in insoluble aggregates. Our study has elucidated a structural basis of m-cresol-induced self-association that can inform the optimized design of drug substances and products. Moreover, it has demonstrated solution NMR as a high-resolution tool to investigate the structure and dynamics of biological drug products and provide an understanding of excipient-induced peptide and protein aggregation.


Assuntos
Anti-Infecciosos , Excipientes , Antibacterianos , Anti-Infecciosos/química , Álcool Benzílico/química , Excipientes/química , Peptídeos , Conservantes Farmacêuticos/química
4.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216076

RESUMO

The neurotransmitter serotonin (5-HT) plays an important role in mood disorders. It has been demonstrated that 5-HT signaling through 5-HT1A receptors (5-HT1A-R) is crucial for early postnatal hippocampal development and later-life behavior. Although this suggests that 5-HT1A-R signaling regulates early brain development, the mechanistic underpinnings of this process have remained unclear. Here we show that stimulation of the 5-HT1A-R at postnatal day 6 (P6) by intrahippocampal infusion of the agonist 8-OH-DPAT (D) causes signaling through protein kinase Cε (PKCε) and extracellular receptor activated kinase ½ (ERK1/2) to boost neuroblast proliferation in the dentate gyrus (DG), as displayed by an increase in bromodeoxy-uridine (BrdU), doublecortin (DCX) double-positive cells. This boost in neuroproliferation was eliminated in mice treated with D in the presence of a 5-HT1A-R antagonist (WAY100635), a selective PKCε inhibitor, or an ERK1/2-kinase (MEK) inhibitor (U0126). It is believed that hippocampal neuro-progenitors undergoing neonatal proliferation subsequently become postmitotic and enter the synaptogenesis phase. Double-staining with antibodies against bromodeoxyuridine (BrdU) and neuronal nuclear protein (NeuN) confirmed that 5-HT1A-R → PKCε → ERK1/2-mediated boosted neuroproliferation at P6 also leads to an increase in BrdU-labeled granular neurons at P36. This 5-HT1A-R-mediated increase in mature neurons was unlikely due to suppressed apoptosis, because terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis showed no difference in DNA terminal labeling between vehicle and 8-OH-DPAT-infused mice. Therefore, 5-HT1A-R signaling through PKCε may play an important role in micro-neurogenesis in the DG at P6, following which many of these new-born neuroprogenitors develop into mature neurons.


Assuntos
Hipocampo/metabolismo , Neurogênese/fisiologia , Proteína Quinase C-épsilon/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Transdução de Sinais/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Bromodesoxiuridina/farmacologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
5.
Toxins (Basel) ; 13(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679015

RESUMO

The voltage-gated sodium channel NaV1.7 is an important target for drug development due to its role in pain perception. Recombinant expression of full-length channels and their use for biophysical characterization of interactions with potential drug candidates is challenging due to the protein size and complexity. To overcome this issue, we developed a protocol for the recombinant expression in E. coli and refolding into lipids of the isolated voltage sensing domain (VSD) of repeat II of NaV1.7, obtaining yields of about 2 mg of refolded VSD from 1 L bacterial cell culture. This VSD is known to be involved in the binding of a number of gating-modifier toxins, including the tarantula toxins ProTx-II and GpTx-I. Binding studies using microscale thermophoresis showed that recombinant refolded VSD binds both of these toxins with dissociation constants in the high nM range, and their relative binding affinities reflect the relative IC50 values of these toxins for full-channel inhibition. Additionally, we expressed mutant VSDs incorporating single amino acid substitutions that had previously been shown to affect the activity of ProTx-II on full channel. We found decreases in GpTx-I binding affinity for these mutants, consistent with a similar binding mechanism for GpTx-I as compared to that of ProTx-II. Therefore, this recombinant VSD captures many of the native interactions between NaV1.7 and tarantula gating-modifier toxins and represents a valuable tool for elucidating details of toxin binding and specificity that could help in the design of non-addictive pain medication acting through NaV1.7 inhibition.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/química , Dobramento de Proteína , Venenos de Aranha/química , Substituição de Aminoácidos , Sítios de Ligação , Escherichia coli , Humanos , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA