RESUMO
The treatment of malaria is a global health challenge that stands to benefit from the widespread introduction of a vaccine for the disease. A method has been developed to create a live organism vaccine using the sporozoites (SPZ) of the parasite Plasmodium falciparum (Pf), which are concentrated in the salivary glands of infected mosquitoes. Current manual dissection methods to obtain these PfSPZ are not optimally efficient for large-scale vaccine production. We propose an improved dissection procedure and a mechanical fixture that increases the rate of mosquito dissection and helps to deskill this stage of the production process. We further demonstrate the automation of a key step in this production process, the picking and placing of mosquitoes from a staging apparatus into a dissection assembly. This unit test of a robotic mosquito pick-and-place system is performed using a custom-designed micro-gripper attached to a four degree of freedom (4-DOF) robot under the guidance of a computer vision system. Mosquitoes are autonomously grasped and pulled to a pair of notched dissection blades to remove the head of the mosquito, allowing access to the salivary glands. Placement into these blades is adapted based on output from computer vision to accommodate for the unique anatomy and orientation of each grasped mosquito. In this pilot test of the system on 50 mosquitoes, we demonstrate a 100% grasping accuracy and a 90% accuracy in placing the mosquito with its neck within the blade notches such that the head can be removed. This is a promising result for this difficult and non-standard pick-and-place task. NOTE TO PRACTITIONERS: Automated processes could help increase malaria vaccine production to global scale. Currently, production requires technicians to manually dissect mosquitoes, a process that is slow, tedious, and requires a lengthy training regimen. This paper presents an an improved manual fixture and procedure that reduces technician training time. Further, an approach to automate this dissection process is proposed and the critical step of robotic manipulation of the mosquito with the aid of computer vision is demonstrated. Our approach may serve as a useful example of system design and integration for practitioners that seek to perform new and challenging pick-and-place tasks with small, non-uniform, and highly deformable objects.
RESUMO
OBJECTIVE: Artificial intelligence (AI)-based decision support systems (DSS) are utilized in medicine but underlying decision-making processes are usually unknown. Explainable AI (xAI) techniques provide insight into DSS, but little is known on how to design xAI for clinicians. Here we investigate the impact of various xAI techniques on a clinician's interaction with an AI-based DSS in decision-making tasks as compared to a general population. METHODS: We conducted a randomized, blinded study in which members of the Child Neurology Society and American Academy of Neurology were compared to a general population. Participants received recommendations from a DSS via a random assignment of an xAI intervention (decision tree, crowd sourced agreement, case-based reasoning, probability scores, counterfactual reasoning, feature importance, templated language, and no explanations). Primary outcomes included test performance and perceived explainability, trust, and social competence of the DSS. Secondary outcomes included compliance, understandability, and agreement per question. RESULTS: We had 81 neurology participants with 284 in the general population. Decision trees were perceived as the more explainable by the medical versus general population (P < 0.01) and as more explainable than probability scores within the medical population (P < 0.001). Increasing neurology experience and perceived explainability degraded performance (P = 0.0214). Performance was not predicted by xAI method but by perceived explainability. INTERPRETATION: xAI methods have different impacts on a medical versus general population; thus, xAI is not uniformly beneficial, and there is no one-size-fits-all approach. Further user-centered xAI research targeting clinicians and to develop personalized DSS for clinicians is needed.
Assuntos
Inteligência Artificial , Sistemas de Apoio a Decisões Clínicas , Neurologia , Humanos , Masculino , Feminino , Neurologia/métodos , Adulto , Pessoa de Meia-Idade , Tomada de Decisão Clínica/métodosRESUMO
BACKGROUND: Correctly triaging patients to a surgeon or a nonoperative provider is an important part of the referral process. Clinics typically triage new patients based on simple intake questions. This is time-consuming and does not incorporate objective data. Our goal was to use machine learning to more accurately screen surgical candidates seen in a spine clinic. METHODS: Using questionnaire data and magnetic resonance imaging reports, a set of artificial neural networks was trained to predict whether a patient would be recommended for spine surgery. Questionnaire responses included demographics, chief complaint, and pain characteristics. The primary end point was the surgeon's determination of whether a patient was an operative candidate. Model accuracy in predicting this end point was assessed using a separate subset of patients. RESULTS: The retrospective dataset included 1663 patients in cervical and lumbar cohorts. Questionnaire data were available for all participants, and magnetic resonance imaging reports were available for 242 patients. Within 6 months of initial evaluation, 717 (43.1%) patients were deemed surgical candidates by the surgeon. Our models predicted surgeons' recommendations with area under the curve scores of 0.686 for lumbar (positive predictive value 66%, negative predictive value 80%) and 0.821 for cervical (positive predictive value 83%, negative predictive value 85%) patients. CONCLUSIONS: Our models used patient data to accurately predict whether patients will receive a surgical recommendation. The high negative predictive value demonstrates that this approach can reduce the burden of nonsurgical patients in surgery clinic without losing many surgical candidates. This could reduce unnecessary visits for patients, increase the proportion of operative candidates seen by surgeons, and improve quality of patient care.