Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(38): e2303765120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695901

RESUMO

This work reports that synchronization of Mott material-based nanoscale coupled spiking oscillators can be drastically different from that in conventional harmonic oscillators. We investigated the synchronization of spiking nanooscillators mediated by thermal interactions due to the close physical proximity of the devices. Controlling the driving voltage enables in-phase 1:1 and 2:1 integer synchronization modes between neighboring oscillators. Transition between these two integer modes occurs through an unusual stochastic synchronization regime instead of the loss of spiking coherence. In the stochastic synchronization regime, random length spiking sequences belonging to the 1:1 and 2:1 integer modes are intermixed. The occurrence of this stochasticity is an important factor that must be taken into account in the design of large-scale spiking networks for hardware-level implementation of novel computational paradigms such as neuromorphic and stochastic computing.

2.
Proc Natl Acad Sci U S A ; 120(8): e2216367120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791111

RESUMO

Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlated d-electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperature T, magnetic field B to 60 T, and pressure P to 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6 to address the question of whether FeSi is a d-electron analogue of an f-electron Kondo insulator and, in addition, a "topological Kondo insulator" (TKI). The overall behavior of the magnetoresistance of FeSi at temperatures above and below the onset temperature TS = 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression of TS. Several studies of ρ(T) under pressure on SmB6 reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at which TS vanishes, although the energy gaps in SmB6 initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature at TS ≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed at TS ≈ 4.5 K for SmB6.

3.
Nature ; 569(7756): 388-392, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043748

RESUMO

Resistive switching, a phenomenon in which the resistance of a device can be modified by applying an electric field1-5, is at the core of emerging technologies such as neuromorphic computing and resistive memories6-9. Among the different types of resistive switching, threshold firing10-14 is one of the most promising, as it may enable the implementation of artificial spiking neurons7,13,14. Threshold firing is observed in Mott insulators featuring an insulator-to-metal transition15,16, which can be triggered by applying an external voltage: the material becomes conducting ('fires') if a threshold voltage is exceeded7,10-12. The dynamics of this induced transition have been thoroughly studied, and its underlying mechanism and characteristic time are well documented10,12,17,18. By contrast, there is little knowledge regarding the opposite transition: the process by which the system returns to the insulating state after the voltage is removed. Here we show that Mott nanodevices retain a memory of previous resistive switching events long after the insulating resistance has recovered. We demonstrate that, although the device returns to its insulating state within 50 to 150 nanoseconds, it is possible to re-trigger the insulator-to-metal transition by using subthreshold voltages for a much longer time (up to several milliseconds). We find that the intrinsic metastability of first-order phase transitions is the origin of this phenomenon, and so it is potentially present in all Mott systems. This effect constitutes a new type of volatile memory in Mott-based devices, with potential applications in resistive memories, solid-state frequency discriminators and neuromorphic circuits.

4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622788

RESUMO

Vanadium dioxide (VO2) has attracted much attention owing to its metal-insulator transition near room temperature and the ability to induce volatile resistive switching, a key feature for developing novel hardware for neuromorphic computing. Despite this interest, the mechanisms for nonvolatile switching functioning as synapse in this oxide remain not understood. In this work, we use in situ transmission electron microscopy, electrical transport measurements, and numerical simulations on Au/VO2/Ge vertical devices to study the electroforming process. We have observed the formation of V5O9 conductive filaments with a pronounced metal-insulator transition and that vacancy diffusion can erase the filament, allowing for the system to "forget." Thus, both volatile and nonvolatile switching can be achieved in VO2, useful to emulate neuronal and synaptic behaviors, respectively. Our systematic operando study of the filament provides a more comprehensive understanding of resistive switching, key in the development of resistive switching-based neuromorphic computing.

5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493666

RESUMO

Vanadium dioxide (VO2), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO2 at local areas in planar VO2/TiO2 device configuration under external biasing. After each resistive switching, different VO2 monoclinic crystal orientations are observed, forming different equilibrium states. We have evaluated a statistical cycle-to-cycle variation, demonstrated a stochastic nature of the volatile resistive switching, and presented an approach to study in-plane structural anisotropy. Our microscopic studies move a big step forward toward understanding the volatile switching mechanisms and the related applications of VO2 as the key material of neuromorphic computing.

6.
Proc Natl Acad Sci U S A ; 117(14): 7645-7649, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205433

RESUMO

Meteorites can contain a wide range of material phases due to the extreme environments found in space and are ideal candidates to search for natural superconductivity. However, meteorites are chemically inhomogeneous, and superconducting phases in them could potentially be minute, rendering detection of these phases difficult. To alleviate this difficulty, we have studied meteorite samples with the ultrasensitive magnetic field modulated microwave spectroscopy (MFMMS) technique [J. G. Ramírez, A. C. Basaran, J. de la Venta, J. Pereiro, I. K. Schuller, Rep. Prog. Phys. 77, 093902 (2014)]. Here, we report the identification of superconducting phases in two meteorites, Mundrabilla, a group IAB iron meteorite [R. Wilson, A. Cooney, Nature 213, 274-275 (1967)] and GRA 95205, a ureilite [J. N. Grossman, Meteorit. Planet. Sci. 33, A221-A239 (1998)]. MFMMS measurements detected superconducting transitions in samples from each, above 5 K. By subdividing and remeasuring individual samples, grains containing the largest superconducting fraction were isolated. The superconducting grains were then characterized with a series of complementary techniques, including vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDX), and numerical methods. These measurements and analysis identified the likely phases as alloys of lead, indium, and tin.

7.
Nano Lett ; 22(3): 1251-1256, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35061947

RESUMO

Probabilistic computing is a paradigm in which data are not represented by stable bits, but rather by the probability of a metastable bit to be in a particular state. The development of this technology has been hindered by the availability of hardware capable of generating stochastic and tunable sequences of "1s" and "0s". The options are currently limited to complex CMOS circuitry and, recently, magnetic tunnel junctions. Here, we demonstrate that metal-insulator transitions can also be used for this purpose. We use an electrical pump/probe protocol and take advantage of the stochastic relaxation dynamics in VO2 to induce random metallization events. A simple latch circuit converts the metallization sequence into a random stream of 1s and 0s. The resetting pulse in between probes decorrelates successive events, providing a true stochastic digital sequence.


Assuntos
Metais , Probabilidade
8.
Proc Natl Acad Sci U S A ; 116(18): 8798-8802, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30975746

RESUMO

Controlling the electronic properties of oxides that feature a metal-insulator transition (MIT) is a key requirement for developing a new class of electronics often referred to as "Mottronics." A simple, controllable method to switch the MIT properties in real time is needed for practical applications. Here we report a giant, nonvolatile resistive switching (ΔR/R > 1,000%) and strong modulation of the MIT temperature (ΔTc > 30 K) in a voltage-actuated V2O3/PMN-PT [Pb(Mg,Nb)O3-PbTiO3] heterostructure. This resistive switching is an order of magnitude larger than ever encountered in any other similar systems. The control of the V2O3 electronic properties is achieved using the transfer of switchable ferroelastic strain from the PMN-PT substrate into the epitaxially grown V2O3 film. Strain can reversibly promote/hinder the structural phase transition in the V2O3, thus advancing/suppressing the associated MIT. The giant resistive switching and strong Tc modulation could enable practical implementations of voltage-controlled Mott devices and provide a platform for exploring fundamental electronic properties of V2O3.

9.
Nano Lett ; 20(11): 7852-7859, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33054240

RESUMO

Vertical van der Waals (vdWs) heterostructures based on layered materials are attracting interest as a new class of quantum materials, where interfacial charge-transfer coupling can give rise to fascinating strongly correlated phenomena. Transition metal chalcogenides are a particularly exciting material family, including ferromagnetic semiconductors, multiferroics, and superconductors. Here, we report the growth of an organic-inorganic heterostructure by intercalating molecular electron donating bis(ethylenedithio)tetrathiafulvalene into (Li,Fe)OHFeSe, a layered material in which the superconducting ground state results from the intercalation of hydroxide layer. Molecular intercalation in this heterostructure induces a transformation from a paramagnetic to spin-glass-like state that is sensitive to the stoichiometry of molecular donor and an applied magnetic field. Besides, electron-donating molecules reduce the electrical resistivity in the heterostructure and modify its response to laser illumination. This hybrid heterostructure provides a promising platform to study emerging magnetic and electronic behaviors in strongly correlated layered materials.

10.
Small ; 16(50): e2005439, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230936

RESUMO

Control of the metal-insulator phase transition is vital for emerging neuromorphic and memristive technologies. The ability to alter the electrically driven transition between volatile and non-volatile states is particularly important for quantum-materials-based emulation of neurons and synapses. The major challenge of this implementation is to understand and control the nanoscale mechanisms behind these two fundamental switching modalities. Here, in situ X-ray nanoimaging is used to follow the evolution of the nanostructure and disorder in the archetypal Mott insulator VO2 during an electrically driven transition. Our findings demonstrate selective and reversible stabilization of either the insulating or metallic phases achieved by manipulating the defect concentration. This mechanism enables us to alter the local switching response between volatile and persistent regimes and demonstrates a new possibility for nanoscale control of the resistive switching in Mott materials.

11.
Phys Rev Lett ; 122(5): 057601, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30821990

RESUMO

The interdependences of different phase transitions in Mott materials are fundamental to the understanding of the mechanisms behind them. One of the most important relations is between the ubiquitous structural and electronic transitions. Using IR spectroscopy, optical reflectivity, and x-ray diffraction, we show that the metal-insulator transition is coupled to the structural phase transition in V_{2}O_{3} films. This coupling persists even in films with widely varying transition temperatures and strains. Our findings are in contrast to recent experimental findings and theoretical predictions. Using V_{2}O_{3} as a model system, we discuss the pitfalls in measurements of the electronic and structural states of Mott materials in general, calling for a critical examination of previous work in this field. Our findings also have important implications for the performance of Mott materials in next-generation neuromorphic computing technology.

12.
Phys Rev Lett ; 120(20): 207601, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864371

RESUMO

Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V_{2}O_{3}. Despite the ultrafast increase in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale twin domains govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the nonequilibrium structural phases play during electronic phase transitions in correlated electrons systems.

13.
Phys Rev Lett ; 114(9): 097202, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793846

RESUMO

The exchange bias of antiferromagnetic-ferromagnetic (AFM-FM) bilayers is found to be strongly dependent on the ferromagnetic spin configuration. The widely accepted inverse proportionality of the exchange bias field with the ferromagnetic thickness is broken in FM layers thinner than the FM correlation length. Moreover, an anomalous thermal dependence of both exchange bias field and coercivity is also found. A model based on springlike domain walls parallel to the AFM-FM interface quantitatively accounts for the experimental results and, in particular, for the deviation from the inverse proportionality law. These results reveal the active role the ferromagnetic spin structure plays in AFM-FM hybrids which leads to a new paradigm of the exchange bias phenomenon.

14.
Phys Chem Chem Phys ; 17(23): 15218-25, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25989751

RESUMO

The phase evolution and morphology of the solid state FeF2 conversion reaction with Li has been characterized using angle-resolved X-ray photoelectron spectroscopy (ARXPS). An epitaxial FeF2(110) film was grown on a MgF2(110) single crystal substrate and exposed to atomic lithium in an ultra-high vacuum chamber. A series of ARXPS spectra was taken after each Li exposure to obtain depth resolved chemical state information. The Li-FeF2 reaction initially proceeded in a layer-by-layer fashion to a depth of ∼1.2 nm. Beyond this depth, the reaction front became non-planar, and regions of unreacted FeF2 were observed in the near-surface region. This reaction progression is consistent with molecular dynamics simulations. Additionally, the composition of the reacted layer was similar to that of electrochemically reacted FeF2 electrodes. An intermediary compound FexLi2-2xF2, attributed to iron substituted in the LiF lattice, has been identified using XPS. These measurements provide insight into the atomistics and phase evolution of high purity FeF2 conversion electrodes without contamination from electrolytes and binders, and the results partially explain the capacity losses observed in cycled FeF2 electrodes.

15.
Rep Prog Phys ; 77(9): 093902, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25222051

RESUMO

This article introduces magnetic field modulated microwave spectroscopy (MFMMS) as a unique and high-sensitivity technique for use in the search for new superconductors. MFMMS measures reflected microwave power as a function of temperature. The modulation induced by the external ac magnetic field enables the use of phase locked detection with the consequent sensitivity enhancement. The MFMMS signal across several prototypical structural, magnetic, and electronic transitions is investigated. A literature review on microwave absorption across superconducting transitions is included. We show that MFMMS can be used to detect superconducting transitions selectively with very high sensitivity.

16.
Adv Mater ; 36(6): e2306818, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37770043

RESUMO

While the complementary metal-oxide semiconductor (CMOS) technology is the mainstream for the hardware implementation of neural networks, an alternative route is explored based on a new class of spiking oscillators called "thermal neuristors", which operate and interact solely via thermal processes. Utilizing the insulator-to-metal transition (IMT) in vanadium dioxide, a wide variety of reconfigurable electrical dynamics mirroring biological neurons is demonstrated. Notably, inhibitory functionality is achieved just in a single oxide device, and cascaded information flow is realized exclusively through thermal interactions. To elucidate the underlying mechanisms of the neuristors, a detailed theoretical model is developed, which accurately reflects the experimental results. This study establishes the foundation for scalable and energy-efficient thermal neural networks, fostering progress in brain-inspired computing.

17.
Nat Commun ; 15(1): 3492, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664381

RESUMO

CMOS-RRAM integration holds great promise for low energy and high throughput neuromorphic computing. However, most RRAM technologies relying on filamentary switching suffer from variations and noise, leading to computational accuracy loss, increased energy consumption, and overhead by expensive program and verify schemes. We developed a filament-free, bulk switching RRAM technology to address these challenges. We systematically engineered a trilayer metal-oxide stack and investigated the switching characteristics of RRAM with varying thicknesses and oxygen vacancy distributions to achieve reliable bulk switching without any filament formation. We demonstrated bulk switching at megaohm regime with high current nonlinearity, up to 100 levels without compliance current. We developed a neuromorphic compute-in-memory platform and showcased edge computing by implementing a spiking neural network for an autonomous navigation/racing task. Our work addresses challenges posed by existing RRAM technologies and paves the way for neuromorphic computing at the edge under strict size, weight, and power constraints.

18.
Phys Rev Lett ; 110(5): 056601, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23414038

RESUMO

We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.

19.
J Chem Phys ; 139(3): 034701, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883046

RESUMO

Phthalocyanines, a class of macrocyclic, square planar molecules, are extensively studied as semiconductor materials for chemical sensors, dye-sensitized solar cells, and other applications. In this study, we use angular dependent near-edge x-ray absorption fine structure (NEXAFS) spectroscopy as a quantitative probe of the orientation and electronic structure of H2-, Fe-, Co-, and Cu-phthalocyanine molecular thin films. NEXAFS measurements at both the carbon and nitrogen K-edges reveal that phthalocyanine films deposited on sapphire have upright molecular orientations, while films up to 50 nm thick deposited on gold substrates contain prostrate molecules. Although great similarity is observed in the carbon and nitrogen K-edge NEXAFS spectra recorded for the films composed of prostrate molecules, the H2-phthalocyanine exhibits the cleanest angular dependence due to its purely out-of-plane π* resonances at the absorption onset. In contrast, organometallic-phthalocyanine nitrogen K-edges have a small in-plane resonance superimposed on this π* region that is due to a transition into molecular orbitals interacting with the 3dx(2)-y(2) empty state. NEXAFS spectra recorded at the metal L-edges for the prostrate films reveal dramatic variations in the angular dependence of specific resonances for the Cu-phthalocyanines compared with the Fe-, and Co-phthalocyanines. The Cu L3,2 edge exhibits a strong in-plane resonance, attributed to its b1g empty state with dx(2)-y(2) character at the Cu center. Conversely, the Fe- and Co- phthalocyanine L3,2 edges have strong out-of-plane resonances; these are attributed to transitions into not only b1g (dz(2)) but also eg states with dxz and dyz character at the metal center.

20.
Adv Mater ; 35(37): e2205098, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36067752

RESUMO

Machine learning has experienced unprecedented growth in recent years, often referred to as an "artificial intelligence revolution." Biological systems inspire the fundamental approach for this new computing paradigm: using neural networks to classify large amounts of data into sorting categories. Current machine-learning schemes implement simulated neurons and synapses on standard computers based on a von Neumann architecture. This approach is inefficient in energy consumption, and thermal management, motivating the search for hardware-based systems that imitate the brain. Here, the present state of thermal management of neuromorphic computing technology and the challenges and opportunities of the energy-efficient implementation of neuromorphic devices are considered. The main features of brain-inspired computing and quantum materials for implementing neuromorphic devices are briefly described, the brain criticality and resistive switching-based neuromorphic devices are discussed, the energy and electrical considerations for spiking-based computation are presented, the fundamental features of the brain's thermal regulation are addressed, the physical mechanisms for thermal management and thermoelectric control of materials and neuromorphic devices are analyzed, and challenges and new avenues for implementing energy-efficient computing are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA