Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(4): 226, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30887248

RESUMO

Scientists and policymakers increasingly recognize that headwater regions contain numerous temporary streams that expand and contract in length, but accurately mapping and modeling dynamic stream networks remain a challenge. Flow intermittency sensors offer a relatively new approach to characterize wet stream length dynamics at high spatial and temporal resolutions. We installed 51 flow intermittency sensors at an average spacing of 40 m along the stream network of a high-relief, headwater catchment (33 ha) in the Valley and Ridge of southwest Virginia. The sensors recorded the presence or absence of water every 15 min for 10 months. Calculations of the wet network proportion from sensor data aligned with those from field measurements, confirming the efficacy of flow intermittency sensors. The fine temporal scale of the sensor data showed hysteresis in wet stream length: the wet network proportion was up to 50% greater on the rising limb of storm events than on the falling limb for dry antecedent conditions, at times with a delay of several hours between the maximum wet proportion and peak runoff at the catchment outlet. Less stream length hysteresis was evident for larger storms with higher event and antecedent precipitation that resulted in peak runoff > 15 mm/day. To assess spatial controls on stream wetting and drying, we performed a correlation analysis between flow duration at the sensor locations and common topographic metrics used in stream network modeling. Topography did not fully explain spatial variation in flow duration along the stream network. However, entrenched valleys had longer periods of flow on the rising limbs of events than unconfined reaches. In addition, large upslope contributing areas corresponded to higher flow duration on falling limbs. Future applications that explore the magnitude and drivers of stream length variability may provide further insights into solute and runoff generation processes in headwater regions.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Movimentos da Água , Virginia , Poluentes da Água
2.
J Am Water Resour Assoc ; 55(2): 369-381, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34316249

RESUMO

Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off-channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality - too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States' rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid-size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors.

3.
Environ Sci Technol ; 52(3): 1165-1173, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29262250

RESUMO

Chaoborus spp. (midge larvae) live in the anoxic sediments and hypolimnia of freshwater lakes and reservoirs during the day and migrate to the surface waters at night to feed on plankton. It has recently been proposed that Chaoborus take up methane (CH4) from the sediments in their tracheal gas sacs, use this acquired buoyancy to ascend into the surface waters, and then release the CH4, thereby serving as a CH4 "pump" to the atmosphere. We tested this hypothesis using diel surveys and seasonal monitoring, as well as incubations of Chaoborus to measure CH4 transport in their gas sacs at different depths and times in a eutrophic reservoir. We found that Chaoborus transported CH4 from the hypolimnion to the lower epilimnion at dusk, but the overall rate of CH4 transport was minor, and incubations revealed substantial variability in CH4 transport over space and time. We calculated that Chaoborus transport ∼0.1 mmol CH4 m-2 yr-1 to the epilimnion in our study reservoir, a very low proportion (<1%) of total CH4 diffusive flux during the summer stratified period. Our data further indicate that CH4 transport by Chaoborus is sensitive to water column mixing, Chaoborus density, and Chaoborus species identity.


Assuntos
Chironomidae , Lagos , Animais , Atmosfera , Metano , Estações do Ano
4.
Environ Sci Technol ; 49(22): 13190-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26463837

RESUMO

Stream and river restoration activities have recently begun to emphasize the enhancement of biogeochemical processing within river networks through the restoration of river-floodplain connectivity. It is generally accepted that this practice removes pollutants such as nitrogen and phosphorus because the increased contact time of nutrient-rich floodwaters with reactive floodplain sediments. Our study examines this assumption in the floodplain of a recently restored, low-order stream through five seasonal experiments. During each experiment, a floodplain slough was artificially inundated for 3 h. Both the net flux of dissolved nutrients and nitrogen uptake rate were measured during each experiment. The slough was typically a source of dissolved phosphorus and dissolved organic matter, a sink of NO3(-), and variable source/sink of ammonium. NO3(-) uptake rates were relatively high when compared to riverine uptake, especially during the spring and summer experiments. However, when scaled up to the entire 1 km restoration reach with a simple inundation model, less than 0.5-1.5% of the annual NO3(-) load would be removed because of the short duration of river-floodplain connectivity. These results suggest that restoring river-floodplain connectivity is not necessarily an appropriate best management practice for nutrient removal in low-order streams with legacy soil nutrients from past agricultural landuse.


Assuntos
Recuperação e Remediação Ambiental/métodos , Nitrogênio/análise , Rios , Agricultura , Ecossistema , Inundações , Nitratos/análise , Fósforo/análise , Estações do Ano , Solo , Virginia
5.
Nature ; 462(7276): 1044-7, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20033045

RESUMO

Riverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. The lability of DOM is thought to vary with age, with younger, relatively unaltered organic matter being more easily metabolized by aquatic heterotrophs than older, heavily modified material. This view is developed exclusively from work in watersheds where terrestrial plant and soil sources dominate streamwater DOM. Here we characterize streamwater DOM from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage (0-64 per cent). In contrast to non-glacial rivers, we find that the bioavailability of DOM to marine microorganisms is significantly correlated with increasing (14)C age. Moreover, the most heavily glaciated watersheds are the source of the oldest ( approximately 4 kyr (14)C age) and most labile (66 per cent bioavailable) DOM. These glacial watersheds have extreme runoff rates, in part because they are subject to some of the highest rates of glacier volume loss on Earth. We estimate the cumulative flux of dissolved organic carbon derived from glaciers contributing runoff to the Gulf of Alaska at 0.13 +/- 0.01 Tg yr(-1) (1 Tg = 10(12) g), of which approximately 0.10 Tg is highly labile. This indicates that glacial runoff is a quantitatively important source of labile reduced carbon to marine ecosystems. Moreover, because glaciers and ice sheets represent the second largest reservoir of water in the global hydrologic system, our findings indicate that climatically driven changes in glacier volume could alter the age, quantity and reactivity of DOM entering coastal oceans.


Assuntos
Ecossistema , Água Doce/química , Substâncias Húmicas/análise , Camada de Gelo , Alaska , Carbono/análise , Camada de Gelo/química , Biologia Marinha , Oceano Pacífico , Espectrometria de Fluorescência , Movimentos da Água
6.
Sci Total Environ ; 828: 154368, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35259378

RESUMO

Urbanization increases runoff, sediment, and nutrient loadings downstream, causing flooding, eutrophication, and harmful algal blooms. Stormwater control measures (SCMs) are used to address these concerns and are designed based on inflow loads. Thus, estimating nutrient and sediment loads is important for meeting restoration objectives. Pollutants accumulate on surfaces during dry periods, making Event Mean Concentration (EMC) a function of antecedent dry period (ADP). An EMC results from wash-off of accumulated pollutants from catchment surface during runoff events. However, several studies found little to no correlation between constituent concentrations in stormwater and ADP. The objective of this study is to verify this finding and discover which climatological or catchment characteristics most significantly affect stormwater quality. Stormwater quality data were obtained from the National Stormwater Quality Database (NSQD), which is the largest data repository of stormwater quality data in the U.S. Bayesian Network Structure Learner (BNSL) was used to assess the relationships between catchment characteristics, climatological information, and stormwater quality for selected land uses. Given the optimal BN structure, it was determined which parameters most affect stormwater quality EMCs. The results demonstrate that both catchment and rain characteristics affected stormwater quality EMCs. Among catchment characteristics, land use (LU) was the most important factor and catchment size was the least. Precipitation depth (P) and duration (D) affected Total Phosphorus (TP), Total Nitrogen (TN), and Total Suspended Solids (TSS). This indicated that it is likely that P and D had a greater influence on stormwater quality more than ADP. P, D, and ADP affected the dissolved constituents of TN (i.e. NO2-N/NO3-N) and TP (i.e. Ortho-P). Compared to other factors (i.e. P and D), the effect of ADP on TSS was negligible. Stormwater quality EMCs related to nitrogen were not affected by catchment slope (S). However, TSS and Ortho-P were influenced by S.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Teorema de Bayes , Monitoramento Ambiental/métodos , Nitrogênio/análise , Nutrientes , Fósforo/análise , Chuva , Movimentos da Água , Poluentes Químicos da Água/análise
7.
Sci Rep ; 12(1): 4261, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277572

RESUMO

Preferential flow reduces water residence times and allows rapid transport of pollutants such as organic contaminants. Thus, preferential flow is considered to reduce the influence of soil matrix-solute interactions during solute transport. While this claim may be true when rainfall directly follows solute application, forcing rapid chemical and physical disequilibrium, it has been perpetuated as a general feature of solute transport-regardless of the magnitude preferential flow. A small number of studies have alternatively shown that preferential transport of strongly sorbing solutes is reduced when solutes have time to diffuse and equilibrate within the soil matrix. Here we expand this inference by allowing solute sorption equilibrium to occur and exploring how physiochemical properties affect solute transport across a vast range of preferential flow. We applied deuterium-labeled rainfall to field plots containing manure spiked with eight common antibiotics with a range of affinity for the soil after 7 days of equilibration with the soil matrix and quantified preferential flow and solute transport using 48 soil pore water samplers spread along a hillslope. Based on > 700 measurements, our data showed that solute transport to lysimeters was similar-regardless of antibiotic affinity for soil-when preferential flow represented less than 15% of the total water flow. When preferential flow exceeded 15%, however, concentrations were higher for compounds with relatively low affinity for soil. We provide evidence that (1) bypassing water flow can select for compounds that are more easily released from the soil matrix, and (2) this phenomenon becomes more evident as the magnitude of preferential flow increases. We argue that considering the natural spectrum preferential flow as an explanatory variable to gauge the influence of soil matrix-solute interactions may improve parsimonious transport models.


Assuntos
Poluentes do Solo , Solo , Solo/química , Poluentes do Solo/análise , Soluções , Água/química , Movimentos da Água
8.
Sci Total Environ ; 773: 145358, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940725

RESUMO

Urban developments can result in higher runoff and nutrient loadings transported to downstream receiving waterbodies. While much effort has been made recently in watershed restoration in the U.S., a lack of recent runoff quality data limits the prediction capability of urban watershed models. The objectives of this study was to fill an existing information gap on how rainfall and land uses interact and affect such loadings. This study instrumented six coastal urban catchments, each dominated by a single land use. We measured total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS), total Kjeldahl Nitrogen (TKN), ortho-P, and nitrate concentrations in runoff from 30 storm events over one year from six urban land uses, namely commercial, industrial, transportation, open space, low density residential, and high density residential. Results indicated that the median event mean concentrations (EMCs) for TSS, TP, and TN were 30 (19-34), 0.31 (0.26-0.31), and 0.94 (0.73-1.25) mg L-1, respectively. TSS EMCs from the open space and industrial land uses were significantly greater than other land uses; there were positive correlations between TN concentrations and imperviousness and between TP concentrations and turf coverage. Both the amount and intensity of rainfall positively influenced TSS concentrations in runoff regardless of land use. Using the collected data, this study developed a generic equation for predicting the loading of a pollutant as a function of rainfall depth. This equation was verified by comparing its predictions with the simulations of a sufficiently-calibrated water quality model in terms of TSS, TP, and TN loadings from various land uses in another coastal catchment for a period of ten years. Average TSS, TN, and TP loadings from the catchment were estimated to be 0.86, 0.03, and 0.01 kg ha-1 cm-1, respectively.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31231642

RESUMO

Harmful Algal Blooms (HABs) have been observed in all 50 states in the U.S., ranging from large freshwater lakes, such as the Great Lakes, to smaller inland lakes, rivers, and reservoirs, as well as marine coastal areas and estuaries. In 2014, a HAB on Lake Erie containing microcystin (a liver toxin) contaminated the municipal water supply in Toledo, Ohio, providing non-potable water to 400,000 people. Studying HABs is complicated as different cyanobacteria produce a range of toxins that impact human health, such as microcystins, saxitoxin, anatoxin-a, and cylindrospermopsin. HABs may be increasing in prevalence with rising temperatures and higher nutrient runoff. Consequently, new tools and technology are needed to rapidly detect, characterize, and respond to HABs that threaten our water security. A framework is needed to understand cyber threats to new and existing technologies that monitor and forecast our water quality. To properly detect, assess, and mitigate security threats on water infrastructure, it is necessary to envision water security from the perspective of a cyber-physical system (CPS). In doing so, we can evaluate risks and research needs for cyber-attacks on HAB-monitoring networks including data injection attacks, automated system hijacking attacks, node forgery attacks, and attacks on learning algorithms. Herein, we provide perspectives on the research needed to understand both the threats posed by HABs and the coupled cyber threats to water security in the context of HABs.

10.
Nat Commun ; 10(1): 5194, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729364

RESUMO

Floodplain inundation poses both risks and benefits to society. In this study, we characterize floodplain inundation across the United States using 5800 stream gages. We find that between 4% and 12.6% of a river's annual flow moves through its floodplains. Flood duration and magnitude is greater in large rivers, whereas the frequency of events is greater in small streams. However, the relative exchange of floodwater between the channel and floodplain is similar across small streams and large rivers, with the exception of the water-limited arid river basins. When summed up across the entire river network, 90% of that exchange occurs in small streams on an annual basis. Our detailed characterization of inundation hydrology provides a unique perspective that the regulatory, management, and research communities can use to help balance both the risks and benefits associated with flooding.

11.
Sci Total Environ ; 667: 166-178, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30831361

RESUMO

Commercial nurseries grow specialty crops for resale using a variety of methods, including containerized production, utilizing soilless substrates, on a semipervious production surface. These "container" nurseries require daily water application and continuous availability of mineral nutrients. These factors can generate significant nutrients [total nitrogen (TN), and total phosphorus (TP)] and sediment [total suspended solids (TSS)] in runoff, potentially contributing to eutrophication of downstream water bodies. Runoff is collected in large ponds known as tailwater recovery basins for treatment and reuse or discharge to receiving streams. We characterized TSS, TN, and TP, electrical conductivity (EC), and pH in runoff from a 5.2 ha production portion of a 200-ha commercial container nursery during storm and irrigation events. Results showed a direct correlation between TN and TP, runoff and TSS, TN and EC, and between flow and pH. The Storm Water Management Model (SWMM) was used to characterize runoff quantity and quality of the site. We found during irrigation events that simulated event mean concentrations (EMCs) of TSS, TN, and TP were 30, 3.1 and 0.35 mg·L-1, respectively. During storm events, TSS, TN and TP EMCs were 880, 3.7, and 0.46 mg·L-1, respectively. EMCs of TN and TP were similar to that of urban runoff; however, the TSS EMC from nursery runoff was 2-4 times greater. The average loading of TSS, TN and TP during storm events was approximately 900, 35 and 50 times higher than those of irrigation events, respectively. Based on a 10-year SWMM simulation (2008-2018) of runoff from the same nursery, annual TSS, TN and TP load per ha during storm events ranged from 9230 to 13,300, 65.8 to 94.0 and 9.00 to 12.9 kg·ha-1·yr-1, respectively. SWMM was able to characterize runoff quality and quantity reasonably well. Thus, it is suitable for characterizing runoff loadings from container nurseries.

12.
Nat Commun ; 9(1): 2779, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018449

RESUMO

Lakes, reservoirs, and other ponded waters are ubiquitous features of the aquatic landscape, yet their cumulative role in nitrogen removal in large river basins is often unclear. Here we use predictive modeling, together with comprehensive river water quality, land use, and hydrography datasets, to examine and explain the influences of more than 18,000 ponded waters on nitrogen removal through river networks of the Northeastern United States. Thresholds in pond density where ponded waters become important features to regional nitrogen removal are identified and shown to vary according to a ponded waters' relative size, network position, and degree of connectivity to the river network, which suggests worldwide importance of these new metrics. Consideration of the interacting physical and biological factors, along with thresholds in connectivity, reveal where, why, and how much ponded waters function differently than streams in removing nitrogen, what regional water quality outcomes may result, and in what capacity management strategies could most effectively achieve desired nitrogen loading reduction.


Assuntos
Lagos/química , Modelos Estatísticos , Ciclo do Nitrogênio , Nitrogênio/química , Poluentes Químicos da Água/química , Conjuntos de Dados como Assunto , Desnitrificação , Ecossistema , Monitoramento Ambiental , Nitrogênio/isolamento & purificação , Rios/química , Estados Unidos , Poluentes Químicos da Água/isolamento & purificação
13.
Sci Total Environ ; 599-600: 145-155, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475908

RESUMO

In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r2=0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r2=0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r2=0.55 for glacial stream, r2=0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm-2y-1, which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska.

14.
Environ Sci Technol ; 36(3): 453-9, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11871561

RESUMO

The biogeochemical processes controlling the speciation and transport of manganese in a Colorado mountain stream were studied using a conservative tracer approach combined with laboratory experiments. The study stream, Lake Fork Creek, receives manganese-rich inflows from a wetland contaminated by acid mine drainage. A conservative tracer experiment was conducted on a 1300-m reach of the stream. Results indicate that manganese was progressively removed from the stream, resulting in a loss of 64 +/- 17 micromol day(-1) m(-1). Laboratory experiments using streamwater, mine effluent, and rocks from the stream showed the importance of surface-catalyzed oxidation and photoreduction on the speciation of manganese. The field and modeling results indicate that light generally promotes oxidation and removal of manganese from the stream, presumably through a photosynthetically enhanced oxidation process. Differences in Mn speciation within the stream suggest that reductive processes affect Mn speciation within the water column. These results identify the rapid oxidation and precipitation of MnOx as a dominant process within this freshwater stream.


Assuntos
Monitoramento Ambiental , Manganês/química , Poluentes da Água/análise , Concentração de Íons de Hidrogênio , Mineração , Oxirredução , Fotossíntese , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA