RESUMO
Brucellosis is a major public health concern worldwide, especially for persons living in resource-limited settings. Historically, an evidence-based estimate of the global annual incidence of human cases has been elusive. We used international public health data to fill this information gap through application of risk metrics to worldwide and regional at-risk populations. We performed estimations using 3 statistical models (weighted average interpolation, bootstrap resampling, and Bayesian inference) and considered missing information. An evidence-based conservative estimate of the annual global incidence is 2.1 million, significantly higher than was previously assumed. Our models indicate Africa and Asia sustain most of the global risk and cases, although areas within the Americas and Europe remain of concern. This study reveals that disease risk and incidence are higher than previously suggested and lie mainly within resource-limited settings. Clarification of both misdiagnosis and underdiagnosis is required because those factors will amplify case estimates.
Assuntos
Brucelose , Humanos , Teorema de Bayes , Incidência , África , Ásia , Brucelose/epidemiologiaRESUMO
Despite a reduction of Salmonella contamination on final poultry products, the level of human salmonellosis cases attributed to poultry has remained unchanged over the last few years. There needs to be improved effort to target serovars which may survive antimicrobial interventions and cause illness, as well as to focus on lessening the amount of contamination entering the processing plant. Advances in molecular enumeration approaches allow for the rapid detection and quantification of Salmonella in pre- and postharvest samples, which can be combined with deep serotyping to properly assess the risk affiliated with a poultry flock. In this study, we collected a total of 160 boot sock samples from 20 broiler farms across four different integrators with different antibiotic management programs. Overall, Salmonella was found in 85% (68/80) of the houses, with each farm having at least one Salmonella-positive house. The average Salmonella quantity across all four complexes was 3.6 log10 CFU/sample. Eleven different serovars were identified through deep serotyping, including all three key performance indicators (KPIs; serovars Enteritidis, Infantis, and Typhimurium) defined by the U.S. Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS). There were eight multidrug resistant isolates identified in this study, and seven which were serovar Infantis. We generated risk scores for each flock based on the presence or absence of KPIs, the relative abundance of each serovar as calculated with CRISPR-SeroSeq (serotyping by sequencing the clustered regularly interspaced palindromic repeats), and the quantity of Salmonella organisms detected. The work presented here provides a framework to develop directed processing approaches and highlights the limitations of conventional Salmonella sampling and culturing methods. IMPORTANCE Nearly one in five foodborne Salmonella illnesses are derived from chicken, making it the largest single food category to cause salmonellosis and indicating a need for effective pathogen mitigation. Although industry has successfully reduced Salmonella incidence in poultry products, there has not been a concurrent reduction in human salmonellosis linked to chicken consumption. New efforts are focused on improved control at preharvest, which requires improved Salmonella surveillance. Here, we present a high-resolution surveillance approach that combines quantity and identity of Salmonella in broiler flocks prior to processing which will further support improved Salmonella controls in poultry. We developed a framework for this approach, indicating that it is possible and important to harness deep serotyping and molecular enumeration to inform on-farm management practices and to minimize risk of cross-contamination between flocks at processing. Additionally, this framework could be adapted to Salmonella surveillance in other food animal production systems.
Assuntos
Intoxicação Alimentar por Salmonella , Salmonelose Animal , Infecções por Salmonella , Animais , Humanos , Sorotipagem/métodos , Galinhas , Salmonella , Intoxicação Alimentar por Salmonella/epidemiologia , Aves Domésticas , Salmonelose Animal/prevenção & controle , Salmonelose Animal/epidemiologiaRESUMO
Salmonella can persist in the feedlot pen environment, acting as a source of transmission among beef cattle. Concurrently, cattle that are colonized with Salmonella can perpetuate contamination of the pen environment through fecal shedding. To study these cyclical dynamics, pen environment and bovine samples were collected for a 7-month longitudinal comparison of Salmonella prevalence, serovar, and antimicrobial resistance profiles. These samples included composite environment, water, and feed from the feedlot pens (n = 30) and cattle (n = 282) feces and subiliac lymph nodes. Salmonella prevalence across all sample types was 57.7%, with the highest prevalence in the pen environment (76.0%) and feces (70.9%). Salmonella was identified in 42.3% of the subiliac lymph nodes. Based on a multilevel mixed-effects logistic regression model, Salmonella prevalence varied significantly (P < 0.05) by collection month for most sample types. Eight Salmonella serovars were identified, and most isolates were pansusceptible, except for a point mutation in the parC gene, associated with fluoroquinolone resistance. There was a proportional difference in serovars Montevideo, Anatum, and Lubbock comparing the environment (37.2, 15.9, and 11.0%, respectively), fecal (27.5, 22.2, and 14.6%, respectively), and lymph node (15.6, 30.2, and 17.7%, respectively) samples. This suggests that the ability of Salmonella to migrate from the pen environment to the cattle host-or vice versa-is serovar specific. The presence of certain serovars also varied by season. Our results provide evidence that Salmonella serovar dynamics differ when comparing environment and host; therefore, developing serovar-specific preharvest environmental Salmonella mitigation strategies should be considered. IMPORTANCE Salmonella contamination of beef products, specifically from the incorporation of bovine lymph nodes into ground beef, remains a food safety concern. Current postharvest Salmonella mitigation techniques do not address Salmonella bacteria that are harbored in the lymph nodes, nor is it well understood how Salmonella invades the lymph nodes. Alternatively, preharvest mitigation techniques that can be applied to the feedlot environment, such as moisture applications, probiotics, or bacteriophage, may reduce Salmonella before dissemination into cattle lymph nodes. However, previous research conducted in cattle feedlots includes study designs that are cross-sectional, are limited to point-in-time sampling, or are limited to sampling of the cattle host, making it difficult to assess the Salmonella interactions between environment and hosts. This longitudinal analysis of the cattle feedlot explores the Salmonella dynamics between the feedlot environment and beef cattle over time to determine the applicability of preharvest environmental treatments.
Assuntos
Doenças dos Bovinos , Salmonella enterica , Animais , Bovinos , Sorogrupo , Estudos Longitudinais , Prevalência , Estudos Transversais , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Salmonella , Fezes/microbiologia , Linfonodos/microbiologiaRESUMO
Salmonella enterica can exist in food animals as multiserovar populations, and different serovars can harbor diverse antimicrobial resistance (AMR) profiles. Conventional Salmonella isolation assesses AMR only in the most abundant members of a multiserovar population, which typically reflects their relative abundance in the initial sample. Therefore, AMR in underlying serovars is an undetected reservoir that can readily be expanded upon antimicrobial use. CRISPR-SeroSeq profiling demonstrated that 60% of cattle fecal samples harbored multiple serovars, including low levels of Salmonella serovar Reading in 11% of samples, which were not found by culture-based Salmonella isolation. An in vitro challenge revealed that Salmonella serovar Reading was tetracycline resistant, while more abundant serovars were susceptible. This study highlights the importance of AMR surveillance in multiserovar populations.
Assuntos
Antibacterianos , Salmonella enterica , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Salmonella/genética , Salmonella enterica/genética , SorogrupoRESUMO
Salmonella enterica is a major foodborne pathogen, and contaminated beef products have been identified as one of the primary sources of Salmonella-related outbreaks. Pathogenicity and antibiotic resistance of Salmonella are highly serotype and subpopulation specific, which makes it essential to understand high-resolution Salmonella population dynamics in cattle. Time of year, source of cattle, pen, and sample type (i.e., feces, hide, or lymph nodes) have previously been identified as important factors influencing the serotype distribution of Salmonella (e.g., Anatum, Lubbock, Cerro, Montevideo, Kentucky, Newport, and Norwich) that were isolated from a longitudinal sampling design in a research feedlot. In this study, we performed high-resolution genomic comparisons of Salmonella isolates within each serotype using both single-nucleotide polymorphism-based maximum-likelihood phylogeny and hierarchical clustering of core-genome multilocus sequence typing. The importance of the aforementioned features in clonal Salmonella expansion was further explored using a supervised machine learning algorithm. In addition, we identified and compared the resistance genes, plasmids, and pathogenicity island profiles of the isolates within each subpopulation. Our findings indicate that clonal expansion of Salmonella strains in cattle was mainly influenced by the randomization of block and pen, as well as the origin/source of the cattle, i.e., regardless of sampling time and sample type (i.e., feces, lymph node, or hide). Further research is needed concerning the role of the feedlot pen environment prior to cattle placement to better understand carryover contributions of existing strains of Salmonella and their bacteriophages. IMPORTANCESalmonella serotypes isolated from outbreaks in humans can also be found in beef cattle and feedlots. Virulence factors and antibiotic resistance are among the primary defense mechanisms of Salmonella, and are often associated with clonal expansion. This makes understanding the subpopulation dynamics of Salmonella in cattle critical for effective mitigation. There remains a gap in the literature concerning subpopulation dynamics within Salmonella serotypes in feedlot cattle from the beginning of feeding up until slaughter. Here, we explore Salmonella population dynamics within each serotype using core-genome phylogeny and hierarchical classifications. We used machine learning to quantitatively parse the relative importance of both hierarchical and longitudinal clustering among cattle host samples. Our results reveal that Salmonella populations in cattle are highly clonal over a 6-month study period and that clonal dissemination of Salmonella in cattle is mainly influenced spatially by experimental block and pen, as well by the geographical origin of the cattle.
Assuntos
Doenças dos Bovinos/microbiologia , Bovinos/microbiologia , Farmacorresistência Bacteriana/genética , Salmonelose Animal/microbiologia , Salmonella enterica/genética , Criação de Animais Domésticos , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Dissacarídeos/farmacologia , Fezes/microbiologia , Genômica , Compostos Heterocíclicos/farmacologia , Aprendizado de Máquina , Filogenia , Polimorfismo de Nucleotídeo Único , SorogrupoRESUMO
Antibiotic use in cattle can select for multidrug-resistant Salmonella enterica, which is considered a serious threat by the U.S. Centers for Disease Control and Prevention. A randomized controlled longitudinal field trial was designed to determine the long-term effects of a single dose of ceftiofur or tulathromycin on Salmonella population characteristics in cattle feces and peripheral lymph nodes and on hides. A total of 134 beef cattle from two sources were divided among 12 pens, with cattle in each of the 3-pen blocks receiving a single dose of either ceftiofur or tulathromycin or neither (control) on day 0. Fecal samples were collected before treatment (day 0) and repeatedly following treatment until slaughter (day 99+). Hide and lymph node samples were collected at slaughter age. Salmonella prevalence, phenotypic antimicrobial resistance, serotype, and phylogenetic relationships were examined. Multilevel mixed logistic regression models indicated no significant effects (P ≥ 0.218) of metaphylactic antibiotics on the prevalence of Salmonella across sample types. However, there was a significant time effect observed, with prevalence increasing from spring through the midsummer months (P < 0.0001) in feces. The majority of Salmonella isolates were pansusceptible to a panel of 14 antibiotics both before and after treatment. Highly prevalent Salmonella serotypes were Salmonella enterica serovar Montevideo, Salmonella enterica serovar Anatum, Salmonella enterica serovar Cerro, and Salmonella enterica serovar Lubbock across all sample types. Strong pen and cattle source serotype clustering effects were observed among Salmonella isolates originating from fecal, lymph node, and hide samples; however, the potential role of Salmonella isolates from the pen environment prior to animal placement was not assessed in this study.IMPORTANCESalmonella is a leading bacterial foodborne pathogen, causing a significant number of human infections and deaths every year in the United States. Macrolides and 3rd-generation cephalosporins play critical roles in the treatment of human salmonellosis. Use of these antibiotics in beef cattle can select for resistant bacteria that may enter the food chain or spread from the farm via manure. There is a lack of longitudinal research concerning the long-term effects of metaphylactic antibiotic administration. Here, we assessed Salmonella population dynamics during the feeding period until slaughter following single-dose antibiotic treatment. We found no long-term effects of antibiotic use early in the cattle-feeding period on Salmonella prevalence and antimicrobial resistance at slaughter. We identified the pens in which cattle were housed as the factor that contributed most to Salmonella serotypes being shared; importantly, the dominant strain in each pen changed repeatedly over the entire feeding period.
Assuntos
Antibacterianos/farmacologia , Doenças dos Bovinos/tratamento farmacológico , Cefalosporinas/farmacologia , Dissacarídeos/farmacologia , Compostos Heterocíclicos/farmacologia , Salmonella enterica/fisiologia , Animais , Bovinos , Fezes/microbiologia , Linfonodos/microbiologia , Dinâmica Populacional , Pele/microbiologiaRESUMO
Treatment of food-producing animals with antimicrobial drugs (AMD) is controversial because of concerns regarding promotion of antimicrobial resistance (AMR). To investigate this concern, resistance genes in metagenomic bovine fecal samples during a clinical trial were analyzed to assess the impacts of treatment on beef feedlot cattle resistomes. Four groups of cattle were exposed, using a 2-by-2 factorial design, to different regimens of antimicrobial treatment. Injections of ceftiofur crystalline-free acid (a third-generation cephalosporin) were used to treat all cattle in treatment pens or only a single animal, and either chlortetracycline was included in the feed of all cattle in a pen or the feed was untreated. On days 0 and 26, respectively, pre- and posttrial fecal samples were collected, and resistance genes were characterized using shotgun metagenomics. Treatment with ceftiofur was not associated with changes to ß-lactam resistance genes. However, cattle fed chlortetracycline had a significant increase in relative abundance of tetracycline resistance genes. There was also an increase of an AMR class not administered during the study, which is a possible indicator of coselection of resistance genes. Samples analyzed in this study had previously been evaluated by culture characterization (Escherichia coli and Salmonella) and quantitative PCR (qPCR) of metagenomic fecal DNA, which allowed comparison of results with this study. In the majority of samples, genes that were selectively enriched through culture and qPCR were not identified through shotgun metagenomic sequencing in this study, suggesting that changes previously documented did not reflect changes affecting the majority of bacterial genetic elements found in the predominant fecal resistome.IMPORTANCE Despite significant concerns about public health implications of AMR in relation to use of AMD in food animals, there are many unknowns about the long- and short-term impact of common uses of AMD for treatment, control, and prevention of disease. Additionally, questions commonly arise regarding how to best measure and quantify AMR genes in relation to public health risks and how to determine which genes are most important. These data provide an introductory view of the utility of using shotgun metagenomic sequencing data as an outcome for clinical trials evaluating the impact of using AMD in food animals.
Assuntos
Bactérias/efeitos dos fármacos , Cefalosporinas/farmacologia , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Ração Animal , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacologia , Bactérias/genética , Bovinos , Cefalosporinas/administração & dosagem , Clortetraciclina/administração & dosagem , DNA Bacteriano/análise , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Fezes/microbiologia , Genes Bacterianos/genética , Metagenômica , Salmonella/genética , Resistência a Tetraciclina/genéticaRESUMO
Antimicrobial use in food animals selects for antimicrobial resistance in bacteria, which can spread to people. Reducing use of antimicrobials-particularly those deemed to be critically important for human medicine-in food production animals continues to be an important step for preserving the benefits of these antimicrobials for people. The World Health Organization ranking of antimicrobials according to their relative importance in human medicine was recently updated. Antimicrobials considered the highest priority among the critically important antimicrobials were quinolones, third- and fourth-generation cephalosporins, macrolides and ketolides, and glycopeptides. The updated ranking allows stakeholders in the agriculture sector and regulatory agencies to focus risk management efforts on drugs used in food animals that are the most important to human medicine. In particular, the current large-scale use of fluoroquinolones, macrolides, and third-generation cephalosporins and any potential use of glycopeptides and carbapenems need to be addressed urgently.
Assuntos
Anti-Infecciosos , Resistência Microbiana a Medicamentos , Controle de Medicamentos e Entorpecentes , Inocuidade dos Alimentos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Humanos , Gestão de Riscos , Organização Mundial da SaúdeRESUMO
Bovine digital dermatitis (DD) is a leading cause of lameness in dairy cattle in the United States, with prevalence estimates as high as 30%. Whereas clinical lesions have been well described, little is known about the morphologic changes that are associated with the early stages of lesion development from normal skin to clinical lesions. This study used the Iowa DD scoring system to evaluate the epidemiology of natural lesion development by digitally photographing the rear legs of a cohort of dairy cows over a 3-yr period. Sixty-one adult Holstein dairy cows were monitored for 1,032 cow foot-months. The incidence rate of lesion development was 4 lesions per 100 cow foot-months, with the average time for a lesion to develop being 133 d. Whereas 20% of the 1,678 foot observations exhibited clinical DD lesions, an additional 55% of all observations exhibited preclinical stage 1 and 2 lesions that were indicative of DD lesion development. Utilizing the dichotomous categorization of preclinical lesions in the Iowa DD scoring system, it was found that first-lactation heifers had a higher rate of the thickened and crusted "B" type lesions, whereas the ulcerative "A" type lesions were more likely to be identified in multiparous animals. For clinical DD lesions that received topical treatment, scoring of the post-treatment lesions using the Iowa DD scoring system was found to be useful in prognosticating both the risk of recrudescence and the time until recrudescence. Systemic disease, systemic antibiotic therapy, and periparturient stress were not associated with an increase or decrease in DD lesion scores. Treatment with a single topical tetracycline wrap was associated with a significant decrease (-1.17) in DD lesion score. The results of this study demonstrate that the complex morphologic changes associated with digital dermatitis can be readily classified using the Iowa DD scoring system and the scores can be used to predict and monitor the effects of treatment and prevention measures.
Assuntos
Doenças dos Bovinos/epidemiologia , Dermatite Digital/prevenção & controle , Animais , Bovinos , Feminino , Doenças do Pé/veterinária , Casco e Garras , Lactação , ParidadeRESUMO
Heavy metals, such as copper, are increasingly supplemented in swine diets as an alternative to antibiotics to promote growth. Enterococci, a common gut commensal, acquire plasmid-borne, transferable copper resistance (tcrB) gene-mediated resistance to copper. The plasmid also carried resistance genes to tetracyclines and macrolides. The potential genetic link between copper and antibiotic resistance suggests that copper supplementation may exert a selection pressure for antimicrobial resistance. Therefore, a longitudinal study was conducted to investigate the effects of in-feed copper, chlortetracycline, and tylosin alone or in combination on the selection and co-selection of antimicrobial-resistant enterococci. The study included 240 weaned piglets assigned randomly to 6 dietary treatment groups: control, copper, chlortetracycline, tylosin, copper and chlortetracycline, and copper and tylosin. Feces were collected before (day 0), during (days 7, 14, 21), and after (days 28 and 35) initiating treatment, and enterococcal isolates were obtained from each fecal sample and tested for genotypic and phenotypic resistance to copper and antibiotics. A total of 2592 enterococcal isolates were tested for tcrB by polymerase chain reaction. The overall prevalence of tcrB-positive enterococci was 14.3% (372/2592). Among the tcrB-positive isolates, 331 were Enterococcus faecium and 41 were E. faecalis. All tcrB-positive isolates contained both erm(B) and tet(M) genes. The median minimum inhibitory concentration of copper for tcrB-negative and tcrB-positive enterococci was 6 and 18 mM, respectively. The majority of isolates (95/100) were resistant to multiple antibiotics. In conclusion, supplementing copper or antibiotics alone did not increase copper-resistant enterococci; however, supplementing antibiotics with copper increased the prevalence of the tcrB gene among fecal enterococci of piglets.
Assuntos
Proteínas de Bactérias/genética , Clortetraciclina/farmacologia , Cobre/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Tilosina/farmacologia , Animais , Antibacterianos/farmacologia , Antiporters/genética , Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Fezes/química , Fezes/microbiologia , Modelos Logísticos , Estudos Longitudinais , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Plasmídeos/metabolismo , Suínos , DesmameRESUMO
BACKGROUND: Age-associated changes in the gastrointestinal microbiome of young pigs have been robustly described; however, the temporal dynamics of the fecal microbiome of the female pig from early life to first parity are not well understood. Our objective was to describe microbiome and antimicrobial resistance dynamics of the fecal microbiome of breeding sows from early life through estrus, parturition and weaning of the first litter of piglets (i.e., from 3 to 53 weeks of age). RESULTS: Our analysis revealed that fecal bacterial populations in developing gilts undergo changes consistent with major maturation milestones. As the pigs progressed towards first estrus, the fecal bacteriome shifted from Rikenellaceae RC9 gut group- and UCG-002-dominated enterotypes to Treponema- and Clostridium sensu stricto 1-dominated enterotypes. After first estrus, the fecal bacteriome stabilized, with minimal changes in enterotype transition and associated microbial diversity from estrus to parturition and subsequent weaning of first litter piglets. Unlike bacterial communities, fecal fungal communities exhibited low diversity with high inter- and intra-pig variability and an increased relative abundance of certain taxa at parturition, including Candida spp. Counts of resistant fecal bacteria also fluctuated over time, and were highest in early life and subsequently abated as the pigs progressed to adulthood. CONCLUSIONS: This study provides insights into how the fecal microbial community and antimicrobial resistance in female pigs change from three weeks of age throughout their first breeding lifetime. The fecal bacteriome enterotypes and diversity are found to be age-driven and established by the time of first estrus, with minimal changes observed during subsequent physiological stages, such as parturition and lactation, when compared to the earlier age-related shifts. The use of pigs as a model for humans is well-established, however, further studies are needed to understand how our results compare to the human microbiome dynamics. Our findings suggest that the fecal microbiome exhibited consistent changes across individual pigs and became more diverse with age, which is a beneficial characteristic for an animal model system.
RESUMO
The aim of this longitudinal study was to determine and compare the prevalences and genotypic profiles of antimicrobial-resistant (AR) Salmonella isolates from pigs reared in antimicrobial-free (ABF) and conventional production systems at farm, at slaughter, and in their environment. We collected 2,889 pig fecal and 2,122 environmental (feed, water, soil, lagoon, truck, and floor swabs) samples from 10 conventional and eight ABF longitudinal cohorts at different stages of production (farrowing, nursery, finishing) and slaughter (postevisceration, postchill, and mesenteric lymph nodes [MLN]). In addition, we collected 1,363 carcass swabs and 205 lairage and truck samples at slaughter. A total of 1,090 Salmonella isolates were recovered from the samples; these were isolated with a significantly higher prevalence in conventionally reared pigs (4.0%; n = 66) and their environment (11.7%; n = 156) than in ABF pigs (0.2%; n = 2) and their environment (0.6%; n = 5) (P < 0.001). Salmonella was isolated from all stages at slaughter, including the postchill step, in the two production systems. Salmonella prevalence was significantly higher in MLN extracted from conventional carcasses than those extracted from ABF carcasses (P < 0.001). We identified a total of 24 different serotypes, with Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Anatum, Salmonella enterica serovar Infantis, and Salmonella enterica serovar Derby being predominant. The highest frequencies of antimicrobial resistance (AR) were exhibited to tetracycline (71%), sulfisoxazole (42%), and streptomycin (17%). Multidrug resistance (resistance to ≥ 3 antimicrobials; MDR) was detected in 27% (n = 254) of the Salmonella isolates from the conventional system. Our study reports a low prevalence of Salmonella in both production systems in pigs on farms, while a higher prevalence was detected among the carcasses at slaughter. The dynamics of Salmonella prevalence in pigs and carcasses were reciprocated in the farm and slaughter environment, clearly indicating an exchange of this pathogen between the pigs and their surroundings. Furthermore, the phenotypic and genotypic fingerprint profile results underscore the potential role played by environmental factors in dissemination of AR Salmonella to pigs.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Microbiologia Ambiental , Carne/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Matadouros , Criação de Animais Domésticos , Animais , Indústria Alimentícia , Genótipo , Estudos Longitudinais , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Sorotipagem , SuínosRESUMO
The objective of this study was to ascertain current teaching methods for antimicrobial resistance (AMR) in veterinary professional curricula and to find out what veterinary instructors consider to be prioritized subtopics related to AMR. The sampling frame was instructors in veterinary professional programs at US colleges of veterinary medicine who provide instruction about antibiotics or AMR in the disciplines of microbiology, pharmacology, public health, epidemiology, internal medicine, surgery, or related subjects. Identified instructors were invited to participate in an online survey of current teaching methods related to subtopics of AMR. From 1,207 invitations, 306 completed surveys were available for analysis (25% response rate) with the largest number of respondents stating their contact hours about antibiotics occur in the discipline of "medicine-food animal." The median contact time suggested for AMR in the core veterinary curriculum was 3-5 hours, and for antibiotics in general, 16-20 hours. Subtopics of AMR were prioritized based on respondents' indication that they use or would use various teaching tools. The most common teaching tool for all topics was projected text (i.e., slides or PowerPoint slides) and the least common were video clips, non-course Web sites, online modules, and laboratory experiments. Recommendations for identifying the priorities of AMR content coverage and learning outcomes are made.
Assuntos
Anti-Infecciosos/farmacologia , Resistência Microbiana a Medicamentos , Educação em Veterinária/métodos , Currículo , Inquéritos e Questionários , Estados UnidosRESUMO
BACKGROUND: The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS: A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS: The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs.
RESUMO
Post-harvest Salmonella mitigation techniques are insufficient at addressing Salmonella harbored in cattle lymph nodes, necessitating the exploration of pre-harvest alternatives that reduce Salmonella prior to dissemination to the lymph nodes. A 2 × 2, unbalanced experiment was conducted to determine the effectiveness of pre-harvest treatments applied to the pen surface for Salmonella mitigation in cattle. Treatments included manure slurry intended to mimic pen run-off water (n = 4 pens), a bacteriophage cocktail (n = 4), a combination of both treatments (n = 5), and a control group (n = 5) that received no treatment. Environment samples from 18 feedlot pens and fecal grabs, hide swabs, and subiliac lymph nodes from 178 cattle were collected and selectively enriched for Salmonella, and Salmonella isolates were sequenced. The combination treatment was most effective at reducing Salmonella, and the prevalence was significantly lower compared with the control group for rump swabs on Days 14 and 21. The treatment impact on Salmonella in the lymph nodes could not be determined due to low prevalence. The reduction on cattle hides suggests that bacteriophage or water treatments applied to the feedlot pen surface may reduce Salmonella populations in cattle during the pre-harvest period, resulting in reduced contamination during slaughter and processing.
RESUMO
Rift Valley fever virus (RVFV) has been expanding its geographical distribution with important implications for both human and animal health. The emergence of Rift Valley fever (RVF) in the Middle East, and its continuing presence in many areas of Africa, has negatively impacted both medical and veterinary infrastructures and human morbidity, mortality, and economic endpoints. Furthermore, worldwide attention should be directed towards the broader infection dynamics of RVFV, because suitable host, vector and environmental conditions for additional epidemics likely exist on other continents; including Asia, Europe and the Americas. We propose a new compartmentalized model of RVF and the related ordinary differential equations to assess disease spread in both time and space; with the latter driven as a function of contact networks. Humans and livestock hosts and two species of vector mosquitoes are included in the model. The model is based on weighted contact networks, where nodes of the networks represent geographical regions and the weights represent the level of contact between regional pairings for each set of species. The inclusion of human, animal, and vector movements among regions is new to RVF modeling. The movement of the infected individuals is not only treated as a possibility, but also an actuality that can be incorporated into the model. We have tested, calibrated, and evaluated the model using data from the recent 2010 RVF outbreak in South Africa as a case study; mapping the epidemic spread within and among three South African provinces. An extensive set of simulation results shows the potential of the proposed approach for accurately modeling the RVF spreading process in additional regions of the world. The benefits of the proposed model are twofold: not only can the model differentiate the maximum number of infected individuals among different provinces, but also it can reproduce the different starting times of the outbreak in multiple locations. Finally, the exact value of the reproduction number is numerically computed and upper and lower bounds for the reproduction number are analytically derived in the case of homogeneous populations.
Assuntos
Modelos Biológicos , Febre do Vale de Rift/epidemiologia , Aedes/virologia , Animais , Culex/virologia , Epidemias , Humanos , Incidência , Insetos Vetores/virologia , Gado/virologia , Dinâmica Populacional , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/veterinária , Vírus da Febre do Vale do Rift/isolamento & purificação , África do Sul/epidemiologiaRESUMO
Age and diet are among the factors that influence the community composition of the fecal microbiome. Additionally, antimicrobial use can alter the composition of bacterial communities. An 86-d study with finisher pigs aimed to evaluate age-related dynamics (day 98 to 177 of age), effects of types and levels of dietary fiber, and injectable antimicrobials on the fecal microbiome and antimicrobial resistance (AMR) was conducted. A total of 287 pigs, housed in 36 pens, with 7 to 8 pigs per pen, fed a corn grain and soybean meal-based basal diet, formulated to contain 8.7% neutral detergent fiber (NDF), were randomly assigned to one of three treatments: 1) basal diet with no supplement, 2) basal diet supplemented with 20% distillers dried grains with solubles (DDGS) formulated to contain 13.6% NDF, or 3) basal diet supplemented with 14.5% sugar beet pulp (SBP) formulated to contain 13.6% NDF. Five finisher pigs from each treatment group were selected randomly, and fecal samples were collected on days 98, 110, 144, and 177 of age. In addition, fecal samples were collected from pigs that were injected intramuscularly ceftiofur hydrochloride or penicillin G on days 1 and 3 along with pen-mate-untreated controls on day 1. Fecal samples were subjected to 16S rRNA amplicon-based microbiome analysis and culture methods to quantify the abundance of total AMR coliforms and enterococci populations. The alpha-diversity, such as species richness, increased with age, and the overall bacterial composition changed with age (P =0.001) and diet (P = 0.001). Diet-associated shifts in the specific bacterial taxa were observed. The richness, diversity, and evenness of bacterial taxa did not differ between pigs that were injected with ceftiofur vs. their untreated pen mates or by dietary treatments but differed in pigs that received penicillin G injection. Both antimicrobial treatments contributed to changes in the overall fecal bacterial composition at the genus level. Collectively, the data demonstrate that both age and the diet (control vs. DDGS-, control vs. SBP-, or DDGS- vs. SBP-based diets) were associated with the overall bacterial community composition, and the impact of age on variations in fecal microbiome composition was greater than the diet. Antibiotic treatment had minimal effect on bacterial diversity and relative abundance of taxa. Furthermore, diets and antimicrobial treatment had minimal impact on the overall counts of AMR coliforms and enterococci populations in feces.
Bacterial communities in the gut and the feces are strongly influenced by a number of factors, particularly the age of the animal and the diet. In addition, antibiotic administration routinely used to treat bacterial diseases can also affect the community composition. A study with finisher pigs was conducted to evaluate age-related changes, effects of typesdistiller's dried grains with solubles (DGGS) or sugar beet pulp (SBP)and levels of dietary fiber, and injectable antibiotics on the fecal bacterial composition and antibiotic resistance in fecal bacteria. Fecal samples were collected from five pigs in each of the three dietary treatment groups, control diet with no supplement or supplemented with DDGS or SBP, on days 98, 110, 144, and 177 of age and on days 1 and 3 after the first injection of antibiotics, ceftiofur or penicillin G. Samples were analyzed to identify the bacterial community composition and prevalence of antibiotic resistance in fecal bacteria. Data generated suggested that the overall bacterial composition changed with age and diet, and age appeared to have a greater impact than diet. Antibiotics had only a modest impact on the bacterial community and had minimum impact on antibiotic resistance of fecal bacteria.
Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Microbiota , Ração Animal/análise , Animais , Antibacterianos/farmacologia , Detergentes , Fibras na Dieta/análise , Farmacorresistência Bacteriana , Fezes/química , RNA Ribossômico 16S , Açúcares , Suínos , Zea maysRESUMO
Extended-spectrum-ß-lactamase (ESBL) and AmpC-lactamase-producing Enterobacteriaceae are serious public health threats. Due to an increasing number of reports of ESBL and AmpC producing Escherichia coli in agricultural settings, it is critical to understand the relationship between the use of two of the highest priority critically important human antibiotics (e.g., third generation cephalosporins [3GC] and macrolides) in food animals and their potential contribution to the selection of ESBL/AmpC E. coli. The objective of our randomized controlled feedlot trial was to measure the effects of ceftiofur crystalline-free acid and tulathromycin on 3GC resistant fecal E. coli populations in cattle before and at various time points after treatment up to and including at slaughter. Multi-level mixed-effects linear regression showed no effect of ceftiofur and tulathromycin on 3GC E. coli CFU counts at slaughter (Day 99); however, a significant (p < 0.05) population shift was observed from susceptible to 3GC resistant E. coli immediately after ceftiofur administration (Day 7). Among 799 fecal samples screened using selective media, 17.7% were ESBL/AmpC E. coli positive, which were further tested for phenotypic antibiotic susceptibility. The majority of the isolates from these plates were multidrug-resistant (94.3%) and expressed either AmpC (78.1%) or ESBL (28.1%) phenotype. A subset of isolates was whole-genome sequenced (n = 20) and identified to harbor chromosomal and/or plasmidal bla genes such as CMY-2, CTX-M, and TEM. Our findings show a time-dependent selection of antibiotics on 3GC-resistant E. coli. High prevalence of multidrug-resistant ESBL/AmpC E. coli found in cattle feces highlights the importance of prudent use of antibiotics in livestock.
Assuntos
Bovinos/microbiologia , Resistência às Cefalosporinas/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Alberta , Animais , Doenças dos Bovinos/microbiologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Variação Genética , Reação em Cadeia da Polimerase , beta-Lactamases/genéticaRESUMO
Porcine circovirus-associated disease (PCVAD) encompasses a group of wasting syndromes linked to porcine circovirus type 2 (PCV2). This paper describes a new PCV2 disease syndrome, called acute pulmonary edema (APE), which, unlike other PCVAD syndromes, has a peracute onset and is associated with herds vaccinated for PCV2.