Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(6): 665-674, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459435

RESUMO

Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.


Assuntos
Tecido Adiposo Marrom/imunologia , Macrófagos/imunologia , Proteína 2 de Ligação a Metil-CpG/genética , Sistema Nervoso Simpático/metabolismo , Termogênese/imunologia , Adipócitos Marrons , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Animais , Axônios/metabolismo , Receptor 1 de Quimiocina CX3C , Metabolismo Energético/imunologia , Citometria de Fluxo , Homeostase , Immunoblotting , Macrófagos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Norepinefrina/metabolismo , Obesidade/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Receptores de Quimiocinas/metabolismo , Semaforinas/metabolismo
2.
Immunity ; 46(6): 1030-1044.e8, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636953

RESUMO

Microglia seed the embryonic neuro-epithelium, expand and actively sculpt neuronal circuits in the developing central nervous system, but eventually adopt relative quiescence and ramified morphology in the adult. Here, we probed the impact of post-transcriptional control by microRNAs (miRNAs) on microglial performance during development and adulthood by generating mice lacking microglial Dicer expression at these distinct stages. Conditional Dicer ablation in adult microglia revealed that miRNAs were required to limit microglial responses to challenge. After peripheral endotoxin exposure, Dicer-deficient microglia expressed more pro-inflammatory cytokines than wild-type microglia and thereby compromised hippocampal neuronal functions. In contrast, prenatal Dicer ablation resulted in spontaneous microglia activation and revealed a role for Dicer in DNA repair and preservation of genome integrity. Accordingly, Dicer deficiency rendered otherwise radio-resistant microglia sensitive to gamma irradiation. Collectively, the differential impact of the Dicer ablation on microglia of the developing and adult brain highlights the changes these cells undergo with time.


Assuntos
Hipocampo/metabolismo , MicroRNAs/genética , Microglia/fisiologia , Neurônios/fisiologia , Ribonuclease III/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Reparo do DNA , Feminino , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Atividade Motora , Plasticidade Neuronal , Ribonuclease III/genética
3.
Mol Cell Neurosci ; 43(1): 117-26, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19837167

RESUMO

The activity of background K(2P) channels adjusts the resting membrane potential to enable plasticity of excitable cells. Here we have studied the regulation of neuronal K(2P)2.1 (KCNK2, TREK-1) channel activity by resting membrane potential. When heterologously expressed, K(2P)2.1 currents gradually increased at hyperpolarizing potentials and declined at depolarizing potentials, with a midpoint potential of -60 mV. As K(2P) channels are not equipped with an integral voltage sensor, we sought extrinsic cellular components that could convert changes in the membrane electrical field to cellular activity that would indirectly modify K(2P)2.1 currents. We propose that membrane depolarization activated the Gq protein-coupled receptor pathway, in the apparent absence of ligand, resulting in phosphatidylinositol-4,5-bisphosphate (PIP(2)) depletion through the action of phospholipase C. Our results suggest a novel mechanism in which an indirect pathway confers membrane potential regulation onto channels that are not intrinsically voltage sensitive to enhance regulation of neuronal excitability levels.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sequência de Aminoácidos , Animais , Inibidores Enzimáticos/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Inativação Gênica , Humanos , Ativação do Canal Iônico/fisiologia , Dados de Sequência Molecular , Neurônios/citologia , Oócitos/citologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Receptores Acoplados a Proteínas G/metabolismo , Alinhamento de Sequência , Fosfolipases Tipo C/metabolismo , Xenopus laevis
4.
Mol Cell Neurosci ; 40(3): 382-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19130888

RESUMO

Pain is a physiological state promoting protective responses to harmful episodes. However, pain can become pathophysiological and become a chronic disruptive condition, damaging quality of life. The mammalian K(2P)2.1 (KCNK2, TREK-1) channel, expressed in sensory neurons of the dorsal root ganglia, was previously identified as a polymodal molecular sensor involved in pain perception. Here, we report that two pain-associated signals, external acidosis and lysophosphatidic acid (LPA), known to rise during injury, inflammation and cancer, profoundly down-modulate human K(2P)2.1 activity. The pH regulatory effect was mediated by activation of proton-sensitive G-protein coupled receptors and phospholipase C. Physiological concentrations of LPA overcame the effects of known K(2P)2.1 activators, such as arachidonic acid, lysophosphatidylcholine and temperature, by activating cell-surface receptors stimulating the G(q) pathway. Furthermore, we identified three K(2P)2.1 carboxy-terminal residues that mediate both pH and LPA regulatory effects. Our results highlight the important role of K(2P)2.1 channels as receptors for mediators known to cause nociception.


Assuntos
Acidose/metabolismo , Lisofosfolipídeos/metabolismo , Neurônios/metabolismo , Dor/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Ativação Enzimática , Proteínas de Ligação ao GTP/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Oócitos/citologia , Oócitos/fisiologia , Fosfolipases Tipo C/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA