Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Hum Genet ; 138(5): 493-499, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30426199

RESUMO

This publication represents a proposed approach to quality standards and guidelines for canine clinical genetic testing laboratories. Currently, there are no guidelines for laboratories performing clinical testing on dogs. Thus, there is no consensus set of protocols that set the minimal standards of quality among these laboratories, potentially causing variable results between laboratories, inconsistencies in reporting, and the inability to share information that could impact testing among organizations. A minimal standard for quality in testing is needed as breeders use the information from genetic testing to make breeding choices and irreversible decisions regarding spay, neuter or euthanasia. Incorrect results can have significant impact on the health of the dogs being tested and on their subsequent progeny. Because of the potentially serious consequences of an incorrect result or incorrect interpretation, results should be reviewed by and reported by individuals who meet a minimum standard of qualifications. Quality guidelines for canine genetic testing laboratories should include not only the analytical phase, but also the preanalytical and postanalytical phases, as this document attempts to address.


Assuntos
Experimentação Animal/normas , Testes Genéticos/veterinária , Guias como Assunto , Controle de Qualidade , Animais , Modelos Animais de Doenças , Cães
2.
Artigo em Inglês | MEDLINE | ID: mdl-31131110

RESUMO

BACKGROUND: Von Willebrand disorder type I (vWDI) is known as an inherited bleeding disorder in different dog breeds following an autosomal recessive inheritance. The Kromfohrländer is a rare dog breed with an increased incidence of unclear bleeding episodes and prolonged coagulation time during/after surgery or injuries, indicating a defect in one or more critical proteins of the coagulation cascade. OBJECTIVE: The objective of this study was to determine whether the c.7437G > A mutation in the VWF gene previously shown to cause von Willebrand disorder type I in Doberman Pinscher is also linked to this disease in the Kromfohrländer breed and to serum concentrations of vWF. Furthermore, establish a possible link between bleeding phenotype, vWF serum concentrations and VWF mutation status. RESULTS: Eighty-seven Kromfohrländer were genotyped for the G > A von Willebrand type I mutation. For detection of the associated mutation we used an endpoint genotyping method. We identified the G > A von Willebrand type I mutation in 80.5% of our study population. 65.5% were heterozygous (WT/MUT) and 15.0% were homozygous for the mutation (MUT/MUT). 21% of the overall study population exhibited bleeding symptoms. 45.5% of all homozygous dogs (MUT/MUT) showed bleeding symptoms. In contrast, wild-type homozygotes exhibited no bleeding symptoms, whereas 23.2% of the heterozygotes did. VWF serum concentrations varied from 28 to 137% in wild-type dogs while in heterozygous and homozygous dogs the concentration ranged from 3 to 77% and 1 to 23%, respectively (p < 0.05). CONCLUSION: Based on our data, we found the G > A mutation in the VWF gene in the Kromfohrländer breed and the subsequent vWDI as the underlying cause for the bleeding episodes and delayed coagulation in heterozygous and homozygous dogs. Since both, heterozygotes and homozygotes show reduced vWF serum concentrations and exhibit to a certain percentage the vWD syndrome phenotype, we postulate that, in contrast to most other vWDI affected breeds, inheritance follows an autosomal dominant mode with incomplete penetrance.

3.
Prog Biophys Mol Biol ; 138: 20-31, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036562

RESUMO

The molecular mechanism essential for the formation of heart valves involves complex interactions of signaling molecules and transcription factors. The Mediator Complex (MC) functions as multi-subunit machinery to orchestrate gene transcription, especially for tissue-specific fine-tuning of transcriptional processes during development, also in the heart. Here, we analyzed the role of the MC subunit Med12 during atrioventricular canal (AVC) development and endocardial cushion formation, using the Med12-deficient zebrafish mutant trapped (tpd). Whereas primary heart formation was only slightly affected in tpd, we identified defects in AVC development and cardiac jelly formation. We found that although misexpression of bmp4 and versican in tpd hearts can be restored by overexpression of a modified version of the Sox9b transcription factor (harboring VP16 transactivation domain) that functions independent of its co-activator Med12, endocardial cushion development in tpd was not reconstituted. Interestingly, expression of tbx2b and its target hyaluronan synthase 2 (has2) - the synthase of hyaluronan (HA) in the heart - was absent in both uninjected and Sox9b-VP16 overexpressing tpd hearts. HA is a major ECM component of the cardiac jelly and required for endocardial cushion formation. Furthermore, we found secreted phosphoprotein 1 (spp1), an endocardial marker of activated AV endocardial cells, completely absent in tpd hearts, suggesting that crucial steps of the transformation of AV endocardial cells into endocardial cushions is blocked. We demonstrate that Med12 controls cardiac jelly formation Sox9-independently by regulating tbx2b and has2 expression and therefore the production of the glycosaminoglycan HA at the AVC to guarantee proper endocardial cushion development.


Assuntos
Valvas Cardíacas/crescimento & desenvolvimento , Coração/crescimento & desenvolvimento , Complexo Mediador/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hialuronan Sintases/metabolismo , Complexo Mediador/deficiência , Complexo Mediador/genética , Mutação , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA