Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Chembiochem ; 23(2): e202100361, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34637168

RESUMO

High costs and low availability of UDP-galactose hampers the enzymatic synthesis of valuable oligosaccharides such as human milk oligosaccharides. Here, we report the development of a platform for the scalable, biocatalytic synthesis and purification of UDP-galactose. UDP-galactose was produced with a titer of 48 mM (27.2 g/L) in a small-scale batch process (200 µL) within 24 h using 0.02 genzyme /gproduct . Through in-situ ATP regeneration, the amount of ATP (0.6 mM) supplemented was around 240-fold lower than the stoichiometric equivalent required to achieve the final product yield. Chromatographic purification using porous graphic carbon adsorbent yielded UDP-galactose with a purity of 92 %. The synthesis was transferred to 1 L preparative scale production in a stirred tank bioreactor. To further reduce the synthesis costs here, the supernatant of cell lysates was used bypassing expensive purification of enzymes. Here, 23.4 g/L UDP-galactose were produced within 23 h with a synthesis yield of 71 % and a biocatalyst load of 0.05 gtotal_protein /gproduct . The costs for substrates per gram of UDP-galactose synthesized were around 0.26 €/g.


Assuntos
Enzimas/metabolismo , Uridina Difosfato Galactose/biossíntese , Trifosfato de Adenosina/metabolismo , Reatores Biológicos , Sistema Livre de Células , Concentração de Íons de Hidrogênio , Oligossacarídeos/biossíntese , Estudo de Prova de Conceito , Uridina Difosfato Galactose/isolamento & purificação
2.
Molecules ; 26(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573219

RESUMO

Bis(demethoxy)curcumin (BDMC) is one of the main active components found in turmeric. Major drawbacks for its usage are its low aqueous solubility, and the challenging separation from other curcuminoids present in turmeric. Co-crystallization can be applied to alter the physicochemical properties of BDMC in a desired manner. A co-crystal screening of BDMC with four hydroxybenzenes was carried out using four different methods of co-crystal production: crystallization from solution by slow solvent evaporation (SSE), and rapid solvent removal (RSR), liquid-assisted grinding (LAG), and crystallization from the melt phase. Two co-crystal phases of BDMC were obtained with pyrogallol (PYR), and hydroxyquinol (HYQ). PYR-BDMC co-crystals can be obtained only from the melt, while HYQ-BDMC co-crystals could also be produced by LAG. Both co-crystals possess an equimolar composition and reveal an incongruent melting behavior. Infrared spectroscopy demonstrated the presence of BDMC in the diketo form in the PYR co-crystals, while it is in a more stable keto-enol form in the HYQ co-crystals. Solubility measurements in ethanol and an ethanol-water mixture revealed an increase of solubility in the latter, but a slightly negative effect on ethanol solubility. These results are useful for a prospective development of crystallization-based separation processes of chemical similar substances through co-crystallization.


Assuntos
Curcuma/química , Curcumina/química , Diarileptanoides/química , Pirogalol/química , Cristalização , Curcumina/síntese química , Diarileptanoides/síntese química , Etanol , Pirogalol/síntese química , Técnicas de Síntese em Fase Sólida , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água
3.
Chemphyschem ; 21(16): 1775-1787, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32519414

RESUMO

Viedma deracemization is based on solution phase racemization, dissolution of racemic or scalemic conglomerates and crystal growth through autocatalytic cluster formation. With rate limiting racemization, its acceleration by appropriate catalysts may result in speeding up deracemization. A conglomerate-forming chiral compound may principally racemize directly, or via reverse of its formation reaction. For a hydrazine derivative, we investigated available racemization pathways in presence of pyrrolidine or thiourea amine as base catalysts: via Mannich or aza-Michael reaction steps and their reverse, or by enolization. Racemization by enolization was computationally found to dominate, both under water-free conditions and in presence of water, involving a multitude of different pathways. Faster racemization in presence of water resulted indeed in more rapid deracemization, when the base was pyrrolidine. Under water-free conditions, the role of water as enolization catalyst is assumed by chiral hydrazine itself - in autocatalytic racemization and in which both reactant and product are catalysts.

4.
Angew Chem Int Ed Engl ; 57(19): 5525-5528, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29465820

RESUMO

Active pharmaceutical ingredients are either extracted from biological sources-where they are synthesized in complex, dynamic environments-or prepared in stepwise chemical syntheses by reacting pure reagents and catalysts under controlled conditions. A combination of these two approaches, where plant extracts containing reagents and catalysts are utilized in intensified chemical syntheses, creates expedient and sustainable processes. We illustrate this principle by reacting crude plant extract, oxygen, acid, and light to produce artemisinin, a key active pharmaceutical ingredient of the most powerful antimalarial drugs. The traditionally discarded extract of Artemisia annua plants contains dihydroartemisinic acid-the final biosynthetic precursor-as well as chlorophyll, which acts as a photosensitizer. Efficient irradiation with visible light in a continuous-flow setup produces artemisinin in high yield, and the artificial biosynthetic process outperforms syntheses with pure reagents.


Assuntos
Antimaláricos/síntese química , Artemisia annua/química , Artemisininas/síntese química , Extratos Vegetais/química , Antimaláricos/química , Antimaláricos/metabolismo , Artemisininas/química , Artemisininas/metabolismo , Estrutura Molecular
5.
Chirality ; 28(6): 514-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27225331

RESUMO

Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid-liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two-step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514-520, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Cristalização/métodos , Estrobilurinas/química , Fungicidas Industriais/química , Solubilidade , Estereoisomerismo
6.
J Am Chem Soc ; 137(34): 11095-104, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26244445

RESUMO

Mandelic acids are prototypic chiral molecules where the sensitivity of crystallized forms (enantiopure/racemic compound/polymorphs) to both conditions and substituents provides a new insight into the factors that may allow chiral separation by crystallization. The determination of a significant number of single crystal structures allows the analysis of 13 enantiopure and 30 racemic crystal structures of 21 (F/Cl/Br/CH3/CH3O) substituted mandelic acid derivatives. There are some common phenyl packing motifs between some groups of racemic and enantiopure structures, although they show very different hydrogen-bonding motifs. The computed crystal energy landscape of 3-chloromandelic acid, which has at least two enantiopure and three racemic crystal polymorphs, reveals that there are many more possible structures, some of which are predicted to be thermodynamically more favorable as well as slightly denser than the known forms. Simulations of mandelic acid dimers in isolation, water, and toluene do not differentiate between racemic and enantiopure dimers and also suggest that the phenyl ring interactions play a major role in the crystallization mechanism. The observed crystallization behavior of mandelic acids does not correspond to any simple "crystal engineering rules" as there is a range of thermodynamically feasible structures with no distinction between the enantiopure and racemic forms. Nucleation and crystallization appear to be determined by the kinetics of crystal growth with a statistical bias, but the diversity of the mandelic acid crystallization behavior demonstrates that the factors that influence the kinetics of crystal nucleation and growth are not yet adequately understood.


Assuntos
Ácidos Mandélicos/química , Termodinâmica , Cinética , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
7.
Anal Chem ; 86(9): 4463-70, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24702177

RESUMO

We report on results obtained with a microscopic modeling approach to Taylor-Aris dispersion in a tube coupled with adsorption-desorption processes at its inner surface. The retention factor of an adsorbed solute is constructed by independent adjustment of the adsorption probability and mean adsorption sojourn time. The presented three-dimensional modeling approach can realize any microscopic model of the adsorption kinetics based on a distribution of adsorption sojourn times expressed in analytical or numerical form. We address the impact of retention factor, adsorption probability, and distribution function for adsorption sojourn times on solute dispersion depending on the average flow velocity. The approach is general and validated at all stages (no sorption; sorption with fast interfacial mass transfer; sorption with slow interfacial mass transfer) using available analytical results for transport in Poiseuille flow through simple geometries. Our results demonstrate that the distribution function for adsorption sojourn times is a key parameter affecting dispersion and show that models of advection-diffusion-sorption cannot describe mass transport without specifying microscopic details of the sorption process. In contrast to previous one-dimensional stochastic models, the presented simulation approach can be applied as well to study systems where diffusion is a rate-controlling process for adsorption.

8.
Angew Chem Int Ed Engl ; 53(5): 1218-50, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24442686

RESUMO

The provision of pure enantiomers is of increasing importance not only for the pharmaceutical industry but also for agrochemistry and biotechnology. In general, there are two rival approaches to provide pure enantiomers. The "chiral" approach is based on developing an asymmetric synthesis of just one of the enantiomers, while the "racemic" approach is based on separating mixtures of the two enantiomers. In the last few years remarkable progress has been achieved in the latter area. This Review focuses in particular on enantioselective crystallization processes and preparative chromatography, including hybrid processes and the incorporation of racemization steps. Several examples from our research are used for illustration purposes.

9.
Eur J Pharm Sci ; 200: 106826, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866112

RESUMO

The separation and purification of plant-based Active Pharmaceutical Ingredients (API) from extracts is a crucial part in pharmaceutical process development. For the purification of the antimalarial drug component artemisinin (ARTE) from an Artemisia anna L. toluene extract, antisolvent crystallization is considered. Solubilities of ARTE in binary solvent mixtures of toluene and two potential antisolvents, n-heptane and ethanol, were determined at temperatures from 278.15 K to 313.15 K. The experimental work was supported by the application of various models, utilizing varying amounts of experimental input data. The goal was the identification of models that are able to predict solubilities in binary solvent mixtures sufficiently accurate and, thus, can help to reduce the experimental effort for future solvent screenings. In this study, we applied the PC-SAFT model both with and without fitting the binary interaction parameter kij between ARTE and the respective solvent, as well as the empirical Jouyban-Acree model. From the experiments, n-heptane demonstrated to be a promising antisolvent, while ethanol acted more as a cosolvent. All models tested were capable of distinguishing between effective and ineffective antisolvents. The purely predictive PC-SAFT model applied with kij = 0 exhibited the largest deviation from the experimental data. This was followed by the PC-SAFT model including fitted kij values, based on at least four experimental data points. The Jouyban-Acree model fitted the data most accurately. Its parametrization required a minimum of ten experimental data points.

10.
Anal Chem ; 85(18): 8850-6, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23980874

RESUMO

An attractive yet hardly explored feature of hydrophilic interaction liquid chromatography (HILIC) is the tuning of analyte retention through the addition of an alcohol to the water (W)-acetonitrile (ACN) mobile phase (MP). When retention times increase sharply between 10/90 and 5/95 (v/v) W/ACN, intermediate retention values are stepwise accessible with a ternary MP of 5/90/5 (v/v/v) W/ACN/alcohol by switching from methanol to ethanol to isopropyl alcohol. We investigate the physicochemical basis of this retention tuning by molecular dynamics simulations using a model of a 9 nm silica pore between two solvent reservoirs. Our simulations show that alcohol molecules insert themselves neatly into the retentive W-rich layer at the silica surface, without disrupting the layer's structure or altering its essential properties. With the decreasing tendency of an alcohol (methanol > ethanol > isopropyl alcohol) to move toward the silica surface, the contrast between the W-rich layer and the bulk MP sharpens as the latter becomes more organic, while the W density near the silica surface remains high. Analyte retention increases with the ratio between the W mole fraction in the diffuse part of the W-rich layer and that in the bulk MP. We predict that tuning of HILIC retention is possible over a wide range through the choice of the third solvent in a W/ACN-based ternary MP, whereby the largest retention values can be expected from W-immiscible solvents that fully remain in the bulk MP.

11.
ACS Omega ; 8(12): 10822-10835, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008081

RESUMO

The crystal growth of boric acid from an aqueous solution in the absence and presence of sodium and lithium sulfate was studied by real-time monitoring. For this purpose, atomic force microscopy in situ has been used. The results show that the growth mechanism of boric acid from its pure and impure solutions is spiral growth driven by screw dislocation and that the velocity of advancement of steps on the crystal surface, and the relative growth rate (ratio of the growth rate in presence and absence of a salt) is reduced in the presence of salts. The reduction of the relative growth rate could be explained by the inhibition of advancement of steps of the (001) face mainly in the growth direction [100] caused by the adsorption of salts on the actives sites and the inhibition of the formation of sources of steps such as dislocations. The adsorption of the salts on the crystal surface is anisotropic and independent of the supersaturation and preferentially on the active sites of the (100) edge. Moreover, this information is of significance for the improvement of the quality of boric acid recovered from brines and minerals and the synthesis of nanostructures and microstructures of boron-based materials.

12.
Br J Nutr ; 108(9): 1603-11, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22244500

RESUMO

Soya is considered to be one of the eight most significant food allergens. Among the allergenic soya proteins determined to date, P34 has been identified as one of the immunodominant soya antigens. Sensitisation to a specific food antigen like P34 generally follows the transit of intact antigens across the intestinal barrier and usually occurs in infants, who are most susceptible to food allergies. In the present study, we used the intestinal epithelial cell line IPEC-J2, which was originally derived from the jejunum of a neonatal piglet, to recapitulate the infant intestinal epithelium and study the binding and uptake of P34 protein. P34 was partially resistant to degradation in an in vitro proteolysis assay. IPEC-J2 cells were able to endocytose intact P34, as shown by immunofluorescence and immunoelectronmicroscopy methods. P34 associated with lipid raft microdomains of IPEC-J2 cells, and disruption of caveolae/lipid raft microdomains using methyl-ß-cyclodextrin abolished P34 endocytosis, indicating that the observed endocytosis was mediated by caveolae. Using IPEC-J2 cells grown on Transwell filters, we further demonstrated that P34 is transported through the epithelial monolayer by transcytosis. Piglets frequently show hypersensitivity to soya antigens, and in this study, we show that healthy adult pigs with dietary exposure to soya protein mount an antibody response to soyabean protein P34, suggesting that this protein has entered the body, probably through gastrointestinal uptake. In summary, our data suggest that soya P34 resists proteolysis in the gastrointestinal tract and is transported through the intestinal epithelial barrier, thereby allowing sensitisation of immune cells in the sub-epithelial compartment.


Assuntos
Antígenos de Plantas/metabolismo , Cavéolas/metabolismo , Endocitose , Enterócitos/metabolismo , Hipersensibilidade Alimentar/metabolismo , Proteínas de Soja/metabolismo , Transcitose , Animais , Animais Endogâmicos , Animais Recém-Nascidos , Anticorpos/análise , Antígenos de Plantas/efeitos adversos , Cavéolas/efeitos dos fármacos , Cavéolas/ultraestrutura , Linhagem Celular , Digestão/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Enterócitos/efeitos dos fármacos , Enterócitos/ultraestrutura , Hipersensibilidade Alimentar/sangue , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/patologia , Absorção Intestinal/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Moduladores de Transporte de Membrana/farmacologia , Microscopia Imunoeletrônica , Transporte Proteico/efeitos dos fármacos , Proteólise , Proteínas de Soja/efeitos adversos , Sus scrofa , Transcitose/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
13.
Angew Chem Int Ed Engl ; 51(28): 7028-30, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22674846

RESUMO

Continuous synthesis meets continuous purification to produce pure products from crude reaction mixtures. In the nucleophilic aromatic substitution of 2,4-difluoronitrobenzene with morpholine the desired monosubstituted product can be continuously separated from the byproducts in a purity of over 99 % by coupling a flow reactor to a simulated moving bed (SMB) chromatography module.

14.
Cryst Growth Des ; 22(7): 4094-4104, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35818384

RESUMO

Kinetically controlled preferential crystallization (PC) is a well-established elegant concept to separate mixtures of enantiomers of conglomerate-forming systems. Based on a smaller number of laboratory investigations, the key parameters of an available shortcut model (SCM) can be estimated, allowing for a rapid and reliable process design. This paper addresses a severe limitation of the method, namely, the limitation of the yield to 50%. In order to exploit the valuable counter enantiomer, the crystallization process is studied, coupled with a racemization reaction and a recycling step. It will be shown that the process integration can be performed in various ways. To quantify the different options in a unified manner and to provide a more general design concept, the SCM of PC is extended to include a kinetic model for the enzymatically catalyzed reaction. For illustration, model parameters are used, which characterize the resolution of the enantiomers of asparagine monohydrate and the racemization rate using an amino acid racemase. The theoretical study highlights the importance of exploiting the best stop time for batch operations in order to achieve the highest process productivity.

15.
Anal Chem ; 83(7): 2569-75, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21366241

RESUMO

To investigate the effect of the nanoscale confinement on the properties of a binary aqueous-organic solvent mixture, we performed molecular dynamics simulations of the equilibration of water-acetonitrile (W/ACN) mixtures between a cylindrical silica pore of 3 nm diameter and two bulk reservoirs. Water is enriched, and acetonitrile is depleted inside the pore with respect to the bulk reservoirs: for nominal molar (~volumetric) ratios of 1/3 (10/90), 1/1 (25/75), and 3/1 (50/50), the molar W/ACN ratio in the pore equilibrates to 1.5, 3.2, and 7.0. Thus, the relative accumulation of water in the pore increases with decreasing water fraction in the nominal solvent composition. The pore exhibits local as well as average solvent compositions, structural features, and diffusive mobilities that differ decidedly from the bulk. Water molecules form hydrogen bonds with the hydrophilic silica surface, resulting in a 0.45 nm thick interfacial layer, where solvent density, coordination, and orientation are independent of the nominal W/ACN ratio and the diffusive mobility goes toward zero. Our data suggest that solute transport along and across the nanopore, from the inner volume to the interfacial water layer and the potential adsorption sites at the silica surface, will be substantially different from transport in the bulk.

16.
Chirality ; 23(2): 118-27, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20845428

RESUMO

The resolution of chiral compound-forming systems using hybrid processes was discussed recently. The concept is of large relevance as these systems form the majority of chiral substances. In this study, a novel hybrid process is presented, which combines pertraction and subsequent preferential crystallization and is applicable for the resolution of such systems. A supported liquid membrane applied in a pertraction process provides enantiomeric enrichment. This membrane contains a solution of a chiral compound acting as a selective carrier for one of the enantiomers. Screening of a large number of liquid membranes and potential carriers using the conductor-like screening model for realistic solvation method led to the identification of several promising carriers, which were tested experimentally in several pertraction runs aiming to yield enriched (+)-(S)-mandelic acid (MA) solutions from racemic feed solutions. The most promising system consisted of tetrahydronaphthalene as liquid membrane and hydroquinine-4-methyl-2-quinolylether (HMQ) as chiral carrier achieving enantiomeric excesses of 15% in average. The successful production of (+)-(S)-MA with a purity above 96% from enriched solutions by subsequent preferential crystallization proved the applicability of the hybrid process.


Assuntos
Éteres/química , Hidroquinonas/química , Ácidos Mandélicos/química , Ácidos Mandélicos/isolamento & purificação , Cristalização , Membranas Artificiais , Modelos Químicos , Quinidina/química , Solubilidade , Estereoisomerismo , Tetra-Hidronaftalenos/química
17.
J Sep Sci ; 34(16-17): 2026-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21648079

RESUMO

This work describes individual steps of an approach toward quantitative correlations between morphological and mass transport properties of capillary silica monoliths. The macropore space morphology of the central core region of the capillary monolith is visualized by a fast, nondestructive, and quantitative method using three-dimensional reconstruction from confocal laser scanning microscopy images. The reconstructed 60 µm×60 µm×12 µm monolith domain consisted of 1.6×10(9) cubic voxels with 30 nm edge length. The received morphological data were chord length distributions for the bulk macropore space and skeleton of the monolith, which we characterized by k-gamma distributions. This analysis provides parameters that can be correlated with the mass transport properties obtained by macropore-scale simulations of flow and transport in the reconstructed monolith. These simulations were realized on a supercomputing platform and comprised the lattice-Boltzmann method for fluid flow and a random-walk particle-tracking method for advective-diffusive mass transport. The characteristic length scales of eddy dispersion correlate with the statistical measures of the chord length distributions. Simulated plate height curves demonstrate that the bulk monolith is very homogeneous, and that the intraskeleton transport properties and a stochastic variation of macropore space characteristics can be neglected compared with the importance of reducing column radial heterogeneity in chromatographic practice.

18.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 3): o570, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21580338

RESUMO

In the racemic title compound, C(22)H(23)NO(7), the dihedral angle between the fused ring systems is 51.87 (6)°. Two of the meth-oxy groups are disordered over two orientations in 0.688 (5):0.312 (5) and 0.672 (15):0.328 (15) ratios. In the crystal, weak C-H⋯O inter-actions link the mol-ecules.

19.
Annu Rev Chem Biomol Eng ; 11: 469-502, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32197049

RESUMO

Enantiomer separation and the isolation of natural products from plants pose challenging separation problems resulting from the similarity of molecules and the number of compounds present in synthesis or extract mixtures. Furthermore, limited theory is available to predict productivities for possible alternative separation techniques. The application and performance of chromatography- and crystallization-based processes are demonstrated for various case studies devoted to isolating valuable target compounds from complex initial mixtures. In all cases, the first emphasis is set to determine the process-specific phase equilibria to identify feasible process options. For all examples considered, yields and productivities are evaluated and compared for different scenarios. Guidelines to approach and solve similar separation tasks are given.


Assuntos
Produtos Biológicos/química , Plantas/metabolismo , Anilidas/química , Anilidas/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Catálise , Cromatografia Líquida , Cristalização , Nitrilas/química , Nitrilas/isolamento & purificação , Rutina/química , Rutina/isolamento & purificação , Estereoisomerismo , Compostos de Tosil/química , Compostos de Tosil/isolamento & purificação
20.
Eng Life Sci ; 20(12): 550-561, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304228

RESUMO

Integration of racemization and a resolution process is an attractive way to overcome yield limitations in the production of pure chiral molecules. Preferential crystallization and other crystallization-based techniques usually produce low enantiomeric excess in solution, which is a constraint for coupling with racemization. We developed an enzymatic fixed bed reactor that can potentially overcome these unfavorable conditions and improve the overall yield of preferential crystallization. Enzyme immobilization strategies were investigated on covalent-binding supports. The amino acid racemase immobilized in Purolite ECR 8309F with a load of 35 mg-enzyme/g-support showed highest specific activity (approx. 500 U/g-support) and no loss in activity in reusability tests. Effects of substrate inhibition observed for the free enzyme were overcome after immobilization. A packed bed reactor with the immobilized racemase showed good performance in steady state operation processing low enantiomeric excess inlet. Kinetic parameters from batch reactor experiments can be successfully used for prediction of packed bed reactor performance. Full conversions could be achieved for residence times above 1.1 min. The results suggest the potential of the prepared racemase reactor to be combined with preferential crystallization to improve resolution of asparagine enantiomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA