Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Inorg Chem ; 62(17): 6674-6687, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042788

RESUMO

We demonstrate colloidal, layer-by-layer growth of metal oxide shells on InP quantum dots (QDs) at room temperature. We show with computational modeling that native InP QD surface oxides give rise to nonradiative pathways due to the presence of surface-localized dark states near the band edges. Replacing surface indium with zinc to form a ZnO shell results in reduced nonradiative decay and a density of states at the valence band edge that resembles defect-free, stoichiometric InP. We then developed a synthetic strategy using stoichiometric amounts of common atomic layer deposition precursors in alternating cycles to achieve layer-by-layer growth. Metal-oxide-shelled InP QDs show bulk and local structural perturbations as determined by X-ray diffraction and extended X-ray absorption fine structure spectroscopy. Upon growing ZnSe shells of varying thickness on the oxide-shelled QDs, we observe increased photoluminescence (PL) quantum yields and narrowing of the emission linewidths that we attribute to decreased ion diffusion to the shell, as supported by phosphorus X-ray emission spectroscopy. These results present a versatile strategy to control QD interfaces for novel heterostructure design by leveraging surface oxides. This work also contributes to our understanding of the connections between structural complexity and PL properties in technologically relevant colloidal optoelectronic materials.

2.
Phys Chem Chem Phys ; 25(34): 22650-22661, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37592924

RESUMO

The emergence of cation-anion species, or contact ion pairs, is fundamental to understanding the physical properties of aqueous solutions when moving from the ideal, low-concentration limit to the manifestly non-ideal limits of very high solute concentration or constituent ion activity. We focus here on Zn halide solutions both as a model system and also as an exemplar of the applications spanning from (i) electrical energy storage via the paradigm of water in salt electrolyte (WiSE) to (ii) the physical chemistry of brines in geochemistry to (iii) the long-standing problem of nucleation. Using a combination of experimental and theoretical approaches we quantify the halide coordination number and changing coordination geometry without embedded use of theoretical equilibrium constants. These results and the associated methods, notably including the use of valence-to-core X-ray emission spectroscopy, provide new insights into the Zn halide system and new research directions in the physical chemistry of concentrated electrolytes.

3.
J Am Chem Soc ; 144(10): 4515-4521, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35255217

RESUMO

The dimensional reduction of solids into smaller fragments provides a route to achieve new physical properties and gain deeper insight into the extended parent structures. Here, we report the synthesis of CuTOTP-OR (TOTPn- = 2,3,6,7-tetraoxidotriphenylene), a family of copper-based macrocycles that resemble truncated fragments of the conductive two-dimensional (2D) metal-organic framework Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). The planar metal-organic macrocycles self-assemble into ordered nanotubes with internal diameters of ∼2 nm and short interlayer distances of ∼3.20 Å. Strong π-π stacking interactions between macrocycles facilitate out-of-plane charge transport, and pressed pellet conductivities as high as 2(1) × 10-3 S cm-1 are observed. Peripheral alkyl functionalization enhances solution processability and enables the fabrication of thin-film field-effect transistor devices. Ambipolar charge transport is observed, suggesting that similar behavior may be operative in Cu3(HHTP)2. By coupling the attractive features of metal-organic frameworks with greater processability, these macrocycles enable facile device integration and a more nuanced understanding of out-of-plane charge transport in 2D conductive metal-organic frameworks.

4.
Inorg Chem ; 61(1): 193-205, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34914366

RESUMO

A cerium-oxo nanocluster capped by chloride ligands, [CeIV38-nCeIIInO56-(n+1)(OH)n+1Cl51(H2O)11]10- (n = 1-24), has been isolated from acidic chloride solutions by using potassium counterions. The crystal structure was elucidated using single crystal X-ray diffraction. At the center of the cluster is a {Ce14} core that exhibits the same fluorite-type structure as bulk CeO2, with eight-coordinate Ce sites bridged by tetrahedral oxo anions. The {Ce14} is further surrounded by a peripheral shell of six tetranuclear {Ce4} subunits that are located on each of the faces of the core to yield the {Ce38} cluster. The surface of the cluster is capped by 51 bridging/terminal chloride ligands and 11 water molecules; the anionic cluster is charge balanced by potassium counterions that exist in the outer coordination sphere. While assignment of the Ce oxidation state by bond valence summation was ambiguous, Ce L3-edge X-ray absorption, X-ray photoelectron, and UV-vis-NIR absorption results were consistent with a CeIII/CeIV cluster. Systematic changes in the XANES and UV-vis-NIR absorption spectra over time pointed to reactivity of the cluster upon exposure to air. These changes were examined using single crystal X-ray diffraction, and a clear single-crystal-to-single-crystal transformation was captured; an overall loss of surface-bound chlorides and water molecules as well as new µ2-OH sites was observed on the cluster surface. This work provides a rare snapshot of metal oxide cluster reactivity. The results may hold implications for understanding the physical and chemical properties of ceria nanoparticles and provide insight into the behavior of other metal-oxo clusters of significant technological and environmental interest.

5.
J Phys Chem A ; 126(29): 4862-4872, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35839329

RESUMO

We analyze an ensemble of organophosphorus compounds to form an unbiased characterization of the information encoded in their X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectra (VtC-XES). Data-driven emergence of chemical classes via unsupervised machine learning, specifically cluster analysis in the Uniform Manifold Approximation and Projection (UMAP) embedding, finds spectral sensitivity to coordination, oxidation, aromaticity, intramolecular hydrogen bonding, and ligand identity. Subsequently, we implement supervised machine learning via Gaussian process classifiers to identify confidence in predictions that match our initial qualitative assessments of clustering. The results further support the benefit of utilizing unsupervised machine learning as a precursor to supervised machine learning, which we term Unsupervised Validation of Classes (UVC), a result that goes beyond the present case of X-ray spectroscopies.


Assuntos
Compostos Organofosforados , Aprendizado de Máquina não Supervisionado , Humanos , Ligantes , Espectrometria por Raios X , Espectroscopia por Absorção de Raios X
6.
Chemistry ; 27(5): 1592-1597, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33064328

RESUMO

A number of technologies would benefit from developing inorganic compounds and materials with specific electronic and magnetic exchange properties. Unfortunately, designing compounds with these properties is difficult because metal⋅⋅⋅metal coupling schemes are hard to predict and control. Fully characterizing communication between metals in existing compounds that exhibit interesting properties could provide valuable insight and advance those predictive capabilities. One such class of molecules are the series of Lindqvist iron-functionalized and hexavanadium polyoxovanadate-alkoxide clusters, which we characterized here using V K-edge X-ray absorption spectroscopy. Substantial changes in the pre-edge peak intensities were observed that tracked with the V 3d-electron count. The data also suggested substantial delocalization between the vanadium cations. Meanwhile, the FeIII cations were electronically isolated from the polyoxovanadate core.

7.
Phys Chem Chem Phys ; 23(41): 23586-23601, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34651631

RESUMO

We report a comprehensive computational study of unsupervised machine learning for extraction of chemically relevant information in X-ray absorption near edge structure (XANES) and in valence-to-core X-ray emission spectra (VtC-XES) for classification of a broad ensemble of sulphorganic molecules. By progressively decreasing the constraining assumptions of the unsupervised machine learning algorithm, moving from principal component analysis (PCA) to a variational autoencoder (VAE) to t-distributed stochastic neighbour embedding (t-SNE), we find improved sensitivity to steadily more refined chemical information. Surprisingly, when embedding the ensemble of spectra in merely two dimensions, t-SNE distinguishes not just oxidation state and general sulphur bonding environment but also the aromaticity of the bonding radical group with 87% accuracy as well as identifying even finer details in electronic structure within aromatic or aliphatic sub-classes. We find that the chemical information in XANES and VtC-XES is very similar in character and content, although they unexpectedly have different sensitivity within a given molecular class. We also discuss likely benefits from further effort with unsupervised machine learning and from the interplay between supervised and unsupervised machine learning for X-ray spectroscopies. Our overall results, i.e., the ability to reliably classify without user bias and to discover unexpected chemical signatures for XANES and VtC-XES, likely generalize to other systems as well as to other one-dimensional chemical spectroscopies.

8.
Angew Chem Int Ed Engl ; 60(16): 9127-9134, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33338295

RESUMO

Surface functionalization of two-dimensional crystals is a key path to tuning their intrinsic physical and chemical properties. However, synthetic protocols and experimental strategies to directly probe chemical bonding in modified surfaces are scarce. Introduced herein is a mild, surface-specific protocol for the surface functionalization of few-layer black phosphorus nanosheets using a family of photolytically generated nitrenes (RN) from the corresponding azides. By embedding spectroscopic tags in the organic backbone, a multitude of characterization techniques are employed to investigate in detail the chemical structure of the modified nanosheets, including vibrational, X-ray photoelectron, solid state 31 P NMR, and UV-vis spectroscopy. To directly probe the functional groups introduced on the surface, R fragments were selected such that in conjunction with vibrational spectroscopy, 15 N-labeling experiments, and DFT methods, diagnostic P=N vibrational modes indicative of iminophosphorane units on the nanosheet surface could be conclusively identified.

9.
J Synchrotron Radiat ; 27(Pt 2): 446-454, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153283

RESUMO

X-ray absorption spectroscopy (XAS) beamlines worldwide are steadily increasing their emphasis on full photon-in/photon-out spectroscopies, such as resonant inelastic X-ray scattering (RIXS), resonant X-ray emission spectroscopy (RXES) and high energy resolution fluorescence detection XAS (HERFD-XAS). In such cases, each beamline must match the choice of emission spectrometer to the scientific mission of its users. Previous work has recently reported a miniature tender X-ray spectrometer using a dispersive Rowland refocusing (DRR) geometry that functions with high energy resolution even with a large X-ray spot size on the sample [Holden et al. (2017). Rev. Sci. Instrum. 88, 073904]. This instrument has been used in the laboratory in multiple studies of non-resonant X-ray emission spectroscopy using a conventional X-ray tube, though only for preliminary measurements at a low-intensity microfocus synchrotron beamline. This paper reports an extensive study of the performance of a miniature DRR spectrometer at an unfocused wiggler beamline, where the incident monochromatic flux allows for resonant studies which are impossible in the laboratory. The results support the broader use of the present design and also suggest that the DRR method with an unfocused beam could have important applications for materials with low radiation damage thresholds and that would not survive analysis on focused beamlines.

10.
J Phys Chem A ; 124(26): 5415-5434, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32486638

RESUMO

An extensive experimental and theoretical study of the Kα and Kß high-resolution X-ray emission spectroscopy (XES) of sulfur-bearing systems is presented. This study encompasses a wide range of organic and inorganic compounds, including numerous experimental spectra from both prior published work and new measurements. Employing a linear-response time-dependent density functional theory (LR-TDDFT) approach, strong quantitative agreement is found in the calculation of energy shifts of the core-to-core Kα as well as the full range of spectral features in the valence-to-core Kß spectrum. The ability to accurately calculate the sulfur Kα energy shift supports the use of sulfur Kα XES as a bulk-sensitive tool for assessing sulfur speciation. The fine structure of the sulfur Kß spectrum, in conjunction with the theoretical results, is shown to be sensitive to the local electronic structure including effects of symmetry, ligand type and number, and, in the case of organosulfur compounds, to the nature of the bonded organic moiety. This agreement between theory and experiment, augmented by the potential for high-access XES measurements with the latest generation of laboratory-based spectrometers, demonstrates the possibility of broad analytical use of XES for sulfur and nearby third-row elements. The effective solution of the forward problem, i.e., successful prediction of detailed spectra from known molecular structure, also suggests future use of supervised machine learning approaches to experimental inference, as has seen recent interest for interpretation of X-ray absorption near-edge structure (XANES).

11.
Small ; 15(31): e1901747, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215181

RESUMO

A local electric field is induced to engineer the interface of vanadium pentoxide nanofibers (V2 O5 -NF) to manipulate the charge transport behavior and obtain high-energy and durable supercapacitors. The interface of V2 O5 -NF is modified with oxygen vacancies (Vö) in a one-step polymerization process of polyaniline (PANI). In the charge storage process, the local electric field deriving from the lopsided charge distribution around Vö will provide Coulombic forces to promote the charge transport in the resultant Vö-V2 O5 /PANI nanocable electrode. Furthermore, an ≈7 nm porous PANI coating serves as the external percolated charge transport pathway. As the charge transfer kinetics are synergistically enhanced by the dual modifications, Vö-V2 O5 /PANI-based supercapacitors exhibit an excellent specific capacitance (523 F g-1 ) as well as a long cycling lifespan (110% of capacitance remained after 20 000 cycles). This work paves an effective way to promote the charge transfer kinetics of electrode materials for next-generation energy storage systems.

12.
J Synchrotron Radiat ; 26(Pt 6): 2086-2093, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721755

RESUMO

There are more than 100 beamlines or endstations worldwide that frequently support X-ray absorption fine-structure (XAFS) measurements, thus providing critical enabling capability for research across numerous scientific disciplines. However, the absence of a supporting tier of more readily accessible, lower-performing options has caused systemic inefficiencies, resulting in high oversubscription and the omission of many scientifically and socially valuable XAFS applications that are incompatible with the synchrotron facility access model. To this end, this work describes the design, performance and uses of the Clean Energy Institute X-ray absorption near-edge structure (CEI-XANES) laboratory spectrometer and its use as both a user-present and mail-in facility. Such new additions to the XAFS infrastructure landscape raise important questions about the most productive interactions between synchrotron radiation and laboratory-based capabilities; this can be discussed in the framework of five categories, only one of which is competitive. The categories include independent operation on independent problems, use dictated by convenience, pre-synchrotron preparatory use of laboratory capability, post-synchrotron follow-up use of laboratory capability, and parallel use of both synchrotron radiation and laboratory systems.

13.
J Am Chem Soc ; 140(51): 17977-17984, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30540455

RESUMO

Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.

14.
Anal Chem ; 90(11): 6587-6593, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29762013

RESUMO

Cr(VI) is a well-known human carcinogen with many water-soluble moieties. Its presence in both natural and man-made substances poses a risk to public health, especially when contamination of groundwater is possible. This has led the European Union and other jurisdictions to include Cr(VI) in restriction of hazardous substances regulations. However, for several important industrial and commercial purposes, analytical capability to characterize Cr(VI) is known to be insufficient for regulatory purposes. For example, advanced X-ray spectroscopies, particularly synchrotron-based X-ray absorption fine structure (XAFS) studies, have shown that species interconversion and under-extraction can be difficult to prevent in many existing liquid extraction protocols when applied to plastics, mining ores and tailings, and paint sludges. Here, we report that wavelength dispersive X-ray fluorescence spectroscopy taken at energy resolutions close to the theoretical limit imposed by the core-hole lifetime, generally called X-ray emission spectroscopy (XES) in the synchrotron community, can be used in the laboratory setting for noninvasive, analytical characterization of the Cr(VI)/Cr ratio in plastics. The selected samples have been part of ongoing efforts by standards development organizations to create improved Cr(VI) testing protocols, and the present work provides a direct proof-of-principle for the use of such extremely high-resolution laboratory WDXRF as an alternative to liquid extraction methods for regulatory compliance testing of Cr(VI) content. As a practical application of this work, we report a value for the Cr(VI) mass fraction of the new NIST Standard Reference Material 2859 Restricted Elements in Polyvinyl Chloride.


Assuntos
Cromo/análise , Laboratórios , Plásticos/química , Espectrometria por Raios X
15.
J Phys Chem A ; 122(23): 5153-5161, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29781610

RESUMO

The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given by benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Kα XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.

16.
J Am Chem Soc ; 136(11): 4186-91, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24606064

RESUMO

We report time-resolved X-ray absorption near edge structure (TR-XANES) measurements at the Eu L3 edge upon photoexcitation of several Eu(III)-based luminescent lanthanide complexes. We find an unambiguous signature of the 4f intrashell excitation that occurs upon energy transfer from the photoactive organic antennas to the lanthanide species. Phenomenologically, this observation provides the basis for direct investigation of a crucial step in the energy transfer pathways that lead to sensitized luminescence in lanthanide-based dyes. Interestingly, the details of the TR-XANES feature suggest that the degree of 4f-5d hybridization may itself vary depending on the excited state of the Eu(III) ion.

17.
J Am Chem Soc ; 135(5): 1864-71, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23351138

RESUMO

Advancing theories of how metal-oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal MO(4)(x-) anions have formed the basis for new M-O bonding theories. Herein, relative changes in M-O orbital mixing in MO(4)(2-) (M = Cr, Mo, W) and MO(4)(-) (M = Mn, Tc, Re) are evaluated for the first time by nonresonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and time-dependent density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M-O e* (π*) mixing; for example, it more than doubles in ReO(4)(-) relative to CrO(4)(2-). Mixing in the t(2)* orbitals (σ* + π*) remains relatively constant within the same Group, but increases on moving from Group 6 to Group 7. These unexpected changes in orbital energy and composition for formally isoelectronic tetraoxometalates are evaluated in terms of periodic trends in d orbital energy and radial extension.


Assuntos
Elétrons , Metais Pesados/química , Oxigênio/química , Teoria Quântica , Microscopia Eletrônica de Transmissão e Varredura , Estrutura Molecular , Espectroscopia por Absorção de Raios X , Raios X
18.
Langmuir ; 29(7): 2166-74, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23379837

RESUMO

Self-assembled monolayers (SAMs) of dipolar phosphonic acids can tailor the interface between organic semiconductors and transparent conductive oxides. When used in optoelectronic devices such as organic light emitting diodes and solar cells, these SAMs can increase current density and photovoltaic performance. The molecular ordering and conformation adopted by the SAMs determine properties such as work function and wettability at these critical interfaces. We combine angle-dependent near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to determine the molecular orientations of a model phenylphosphonic acid on indium zinc oxide, and correlate the resulting values with density functional theory (DFT). We find that the SAMs are surprisingly well-oriented, with the phenyl ring adopting a well-defined tilt angle of 12-16° from the surface normal. We find quantitative agreement between the two experimental techniques and density functional theory calculations. These results not only provide a detailed picture of the molecular structure of a technologically important class of SAMs, but also resolve a long-standing ambiguity regarding the vibrational-mode assignments for phosphonic acids on oxide surfaces, thus improving the utility of PM-IRRAS for future studies.

19.
Adv Mater ; 33(35): e2101259, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34292627

RESUMO

Black phosphorus (BP) is a promising anode material in lithium-ion batteries (LIBs) owing to its high electrical conductivity and capacity. However, the huge volume change of BP during cycling induces rapid capacity fading. In addition, the unclear electrochemical mechanism of BP hinders the development of rational designs and preparation of high-performance BP-based anodes. Here, a high-performance nanostructured BP-graphite-carbon nanotubes composite (BP/G/CNTs) synthesized using ball-milling method is reported. The BP/G/CNTs anode delivers a high initial capacity of 1375 mA h g-1 at 0.15 A g-1 and maintains 1031.7 mA h g-1 after 450 cycles. Excellent high-rate performance is demonstrated with a capacity of 508.1 mA h g-1 after 3000 cycles at 2 A g-1 . Moreover, for the first time, direct evidence is provided experimentally to present the electrochemical mechanism of BP anodes with three-step lithiation and delithiation using ex situ X-ray diffraction (XRD), ex situ X-ray absorption spectroscopy (XAS), ex situ X-ray emission spectroscopy, operando XRD, and operando XAS, which reveal the formation of Li3 P7 , LiP, and Li3 P. Furthermore, the study indicates an open-circuit relaxation effect of the electrode with ex situ and operando XAS analyses.

20.
J Am Chem Soc ; 132(39): 13914-21, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20839792

RESUMO

Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA