RESUMO
The pre-erythrocytic liver stage of the malaria parasite, comprising sporozoites and the liver stages into which they develop, remains one of the least understood parts of the lifecycle, in part owing to the low numbers of parasites. Nonetheless, it is recognized as an important target for antimalarial drugs and vaccines. Here we provide the first proteomic analysis of merosomes, which define the final phase of the liver stage and are responsible for initiating the blood stage of infection. We identify a total of 1879 parasite proteins, and a core set of 1188 proteins quantitatively detected in every biological replicate, providing an extensive picture of the protein repertoire of this stage. This unique data set will allow us to explore key questions about the biology of merosomes and hepatic merozoites.
Assuntos
Fígado/parasitologia , Malária/diagnóstico , Plasmodium berghei/isolamento & purificação , Proteômica , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Hepatócitos/parasitologia , Humanos , Estágios do Ciclo de Vida/genética , Malária/sangue , Malária/genética , Malária/parasitologia , Merozoítos/isolamento & purificação , Merozoítos/patogenicidade , Camundongos , Plasmodium berghei/genética , Plasmodium berghei/patogenicidadeRESUMO
Anopheles gambiae is a major mosquito vector responsible for malaria transmission, whose genome sequence was reported in 2002. Genome annotation is a continuing effort, and many of the approximately 13,000 genes listed in VectorBase for Anopheles gambiae are predictions that have still not been validated by any other method. To identify protein-coding genes of An. gambiae based on its genomic sequence, we carried out a deep proteomic analysis using high-resolution Fourier transform mass spectrometry for both precursor and fragment ions. Based on peptide evidence, we were able to support or correct more than 6000 gene annotations including 80 novel gene structures and about 500 translational start sites. An additional validation by RT-PCR and cDNA sequencing was successfully performed for 105 selected genes. Our proteogenomic analysis led to the identification of 2682 genome search-specific peptides. Numerous cases of encoded proteins were documented in regions annotated as intergenic, introns, or untranslated regions. Using a database created to contain potential splice sites, we also identified 35 novel splice junctions. This is a first report to annotate the An. gambiae genome using high-accuracy mass spectrometry data as a complementary technology for genome annotation.
Assuntos
Anopheles/genética , Anopheles/metabolismo , Processamento Alternativo , Animais , Mapeamento Cromossômico , Códon de Iniciação , Éxons , Genes de Insetos , Genômica , Íntrons , Espectrometria de Massas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/genética , Proteômica , Sítios de Splice de RNA , Reprodutibilidade dos Testes , Regiões não Traduzidas/genéticaRESUMO
BACKGROUND: Arthritis refers to inflammation of joints and includes common disorders such as rheumatoid arthritis (RA) and spondyloarthropathies (SpAs). These diseases differ mainly in terms of their clinical manifestations and the underlying pathogenesis. Glycoproteins in synovial fluid might reflect the disease activity status in the joints affected by arthritis; yet they have not been systematically studied previously. Although markers have been described for assisting in the diagnosis of RA, there are currently no known biomarkers for SpA. MATERIALS AND METHODS: We sought to determine the relative abundance of glycoproteins in RA and SpA by lectin affinity chromatography coupled to iTRAQ labeling and LC-MS/MS analysis. We also used ELISA to validate the overexpression of VCAM-1, one of the candidate proteins identified in this study, in synovial fluid from RA patients. RESULTS AND DISCUSSION: We identified proteins that were previously reported to be overexpressed in RA including metalloproteinase inhibitor 1 (TIMP1), myeloperoxidase (MPO) and several S100 proteins. In addition, we discovered several novel candidates that were overexpressed in SpA including Apolipoproteins C-II and C-III and the SUN domain-containing protein 3 (SUN3). Novel molecules found overexpressed in RA included extracellular matrix protein 1 (ECM1) and lumican (LUM). We validated one of the candidate biomarkers, vascular cell adhesion molecule 1 (VCAM1), in 20 RA and SpA samples using ELISA and confirmed its overexpression in RA (p-value <0.01). Our quantitative glycoproteomic approach to study arthritic disorders should open up new avenues for additional proteomics-based discovery studies in rheumatological disorders.
RESUMO
Visceral leishmaniasis or kala azar is the most severe form of leishmaniasis and is caused by the protozoan parasite Leishmania donovani. There is no published report on L. donovani genome sequence available till date, although the genome sequences of three related Leishmania species are already available. Thus, we took a proteogenomic approach to identify proteins from two different life stages of L. donovani. From our analysis of the promastigote (insect) and amastigote (human) stages of L. donovani, we identified a total of 22,322 unique peptides from a homology-based search against proteins from three Leishmania species. These peptides were assigned to 3711 proteins in L. infantum, 3287 proteins in L. major, and 2433 proteins in L. braziliensis. Of the 3711 L. donovani proteins that were identified, the expression of 1387 proteins was detectable in both life stages of the parasite, while 901 and 1423 proteins were identified only in promastigotes and amastigotes life stages, respectively. In addition, we also identified 13 N-terminally and one C-terminally extended proteins based on the proteomic data search against the six-frame translated genome of the three related Leishmania species. Here, we report results from proteomic profiling of L. donovani, an organism with an unsequenced genome.
Assuntos
Leishmania donovani/química , Proteômica/métodos , Proteínas de Protozoários/análise , Sequência de Aminoácidos , Bases de Dados de Proteínas , Leishmania donovani/genética , Leishmaniose Visceral/microbiologia , Dados de Sequência Molecular , Proteoma/análise , Proteoma/genética , Proteoma/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Espectrometria de Massas em Tandem , Fatores de Virulência/análise , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificaçãoRESUMO
Candida glabrata is a common opportunistic human pathogen leading to significant mortality in immunosuppressed and immunodeficient individuals. We carried out proteomic analysis of C. glabrata using high resolution Fourier transform mass spectrometry with MS resolution of 60,000 and MS/MS resolution of 7500. On the basis of 32,453 unique peptides identified from 118,815 peptide-spectrum matches, we validated 4421 of the 5283 predicted protein-coding genes (83%) in the C. glabrata genome. Further, searching the tandem mass spectra against a six frame translated genome database of C. glabrata resulted in identification of 11 novel protein coding genes and correction of gene boundaries for 14 predicted gene models. A subset of novel protein-coding genes and corrected gene models were validated at the transcript level by RT-PCR and sequencing. Our study illustrates how proteogenomic analysis enabled by high resolution mass spectrometry can enrich genome annotation and should be an integral part of ongoing genome sequencing and annotation efforts.
Assuntos
Candida glabrata/metabolismo , Proteínas Fúngicas/genética , Proteoma/genética , Sequência de Aminoácidos , Candida glabrata/genética , Códon de Iniciação , Análise de Fourier , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Expressão Gênica , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Proteoma/química , Proteoma/metabolismo , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em TandemRESUMO
PURPOSE: Gastric cancer is a commonly occurring cancer in Asia and one of the leading causes of cancer deaths. However, there is no reliable blood-based screening test for this cancer. Identifying proteins secreted from tumor cells could lead to the discovery of clinically useful biomarkers for early detection of gastric cancer. EXPERIMENTAL DESIGN: A SILAC-based quantitative proteomic approach was employed to identify secreted proteins that were differentially expressed between neoplastic and non-neoplastic gastric epithelial cells. Proteins from the secretome were subjected to SDS-PAGE and SCX-based fractionation, followed by mass spectrometric analysis on an LTQ-Orbitrap Velos mass spectrometer. Immunohistochemical labeling was employed to validate a subset of candidates using tissue microarrays. RESULTS: We identified 2205 proteins in the gastric cancer secretome of which 263 proteins were overexpressed greater than fourfold in gastric cancer-derived cell lines as compared to non-neoplastic gastric epithelial cells. Three candidate proteins, proprotein convertase subtilisin/kexin type 9 (PCSK9), lectin mannose binding 2 (LMAN2), and PDGFA-associated protein 1 (PDAP1) were validated by immunohistochemical labeling. CONCLUSIONS AND CLINICAL RELEVANCE: We report here the largest cancer secretome described to date. The novel biomarkers identified in the current study are excellent candidates for further testing as early detection biomarkers for gastric adenocarcinoma.
Assuntos
Adenocarcinoma/metabolismo , Aminoácidos/metabolismo , Proteínas/metabolismo , Proteômica , Neoplasias Gástricas/metabolismo , Adenocarcinoma/patologia , Aminoácidos/química , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Marcação por Isótopo , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/metabolismo , Espectrometria de Massas , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/química , Pró-Proteína Convertases/metabolismo , Proteínas/química , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Neoplasias Gástricas/patologiaRESUMO
We previously developed NetPath as a resource for comprehensive manually curated signal transduction pathways. The pathways in NetPath contain a large number of molecules and reactions which can sometimes be difficult to visualize or interpret given their complexity. To overcome this potential limitation, we have developed a set of more stringent curation and inclusion criteria for pathway reactions to generate high-confidence signaling maps. NetSlim is a new resource that contains this 'core' subset of reactions for each pathway for easy visualization and manipulation. The pathways in NetSlim are freely available at http://www.netpath.org/netslim.