Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(23): 37993-38003, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017917

RESUMO

Here, we report on the increase of the quality-factors of photonic crystal nanocavities fabricated by a CMOS-compatible process. We fabricated nanocavities with the same cavity design but used either a binary photomask or a phase-shift photomask in the photolithography step to assess the impact of the photomask-type on the fabrication accuracy of the air holes. We characterized 62 cavities using time-resolved measurements and the best cavity had a quality-factor of 6.65 × 106. All cavities exhibited a quality-factor larger than 2 million and the overall average was 3.25 × 106. While the estimated magnitude of the scattering loss due to the air hole variations in the 33 cavities fabricated with the phase-shift photomask was slightly lower than that in the 29 cavities fabricated with binary photomask, the phase-shift photomask did not provide a significant improvement in the fabrication accuracy. On average, the scattering loss in these samples is more than 3 times larger than that of nanocavities fabricated using electron-beam lithography, which indicates room for further improvement.

2.
Opt Lett ; 45(7): 2095-2098, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236077

RESUMO

A simple low-loss fiber coupling structure consisting of a Si inverted-taper waveguide and a 435 nm wide and 290 nm thick SiN waveguide was fabricated with fully complementary metal-oxide semiconductor (CMOS)-compatible processes. The small SiN waveguide can expand to the optical field corresponding to a fiber with a mode-field diameter of 4.1 µm. The fiber-to-chip coupling losses were 0.25 and 0.51 dB/facet for quasi-TE and quasi-TM modes, respectively, at a 1550 nm wavelength. Polarization-dependent losses of the conversion in the Si-to-SiN waveguide transition and the fiber-to-chip coupling were less than 0.3 and 0.5 dB, respectively, in the wavelength range of 1520-1580 nm.

3.
Opt Express ; 26(10): 13573-13589, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801381

RESUMO

A wavelength selective switch (WSS) can route optical signals into any of output ports by wavelength, and is a key component of the reconfigurable optical add/drop multiplexer. We propose a wavefront control type WSS using silicon photonics technology. This consists of several arrayed waveguide gratings sharing a large slab waveguide, wavefront control waveguides and distributed Bragg reflectors. The structure, design method, operating principle, and scalability of the WSS are described and discussed. We designed and fabricated a 1 × 2 wavefront control type WSS using silicon waveguides. This has 16 channels with a channel spacing of 200 GHz. The chip size is 5 mm × 10 mm. The switching operation was achieved by shifting the phase of the light propagating in each wavefront control waveguide, and by controlling the propagation direction in the shared large slab waveguide. Our WSS has no crossing waveguide, so the loss and the variation in loss between channels were small compared to conventional waveguide type WSSs. The heater power required for switching was 183 mW per channel, and the average extinction ratios routed to Output#1 and Output#2 were 9.8 dB and 10.2 dB, respectively.

4.
Opt Express ; 25(15): 18165-18174, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789305

RESUMO

We fabricated photonic crystal high-quality factor (Q) nanocavities on a 300-mm-wide silicon-on-insulator wafer by using argon fluoride immersion photolithography. The heterostructure nanocavities showed an average experimental Q value of 1.5 million for 12 measured samples. The highest Q value was 2.3 million, which represents a record for a nanocavity fabricated by complementary metal-oxide-semiconductor (CMOS)-compatible machinery. We also demonstrated an eight-channel drop filter with 4 nm spacing consisting of arrayed nanocavities with three missing air holes. The standard deviation in the drop wavelength was less than 1 nm. These results will accelerate ultrahigh-Q nanocavity research in various areas.

5.
Opt Express ; 23(13): 17599-606, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191767

RESUMO

We demonstrate a 32 × 32 path-independent-insertion-loss optical path switch that integrates 1024 thermooptic Mach-Zehnder switches and 961 intersections on a small, 11 × 25 mm2 die. The switch is fabricated on a 300-mm-diameter silicon-on-insulator wafer by a complementary metal-oxide semiconductor-compatible process with advanced ArF immersion lithography. For reliable electrical packaging, the switch chip is flip-chip bonded to a ceramic interposer that arranges the electrodes in a 0.5-mm pitch land grid array. The on-chip loss is measured to be 15.8 ± 1.0 dB, and successful switching is demonstrated for digital-coherent 43-Gb/s QPSK signals. The total crosstalk of the switch is estimated to be less than -20 dB at the center wavelength of 1545 nm. The bandwidth narrowing caused by dimensional errors that arise during fabrication is discussed.

6.
Opt Express ; 21(25): 30163-74, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514595

RESUMO

We report superior spectral characteristics of silicon-nanowire-based 5th-order coupled resonator optical waveguides (CROW) fabricated by 193-nm ArF-immersion lithography process on a 300-mm silicon-on-insulator wafer. We theoretically analyze spectral characteristics, considering random phase errors caused by micro fabrication process. It will be experimentally demonstrated that the fabricated devices exhibit a low excess loss of 0.4 ± 0.2 dB, a high out-of-band rejection ratio of >40dB, and a wide flatband width of ~2 nm. Furthermore, we evaluate manufacturing tolerances for intra-dies and inter-dies, comparing with the cases for 248-nm KrF-dry lithography process. It will be shown that the 193-nm ArF-immersion lithography process can provide much less excess phase errors of Si-nanowire waveguides, thus enabling to give better filter spectral characteristics. Finally, spectral superiorities will be reconfirmed by measuring 25 Gbps modulated signals launched into the fabricated device. Clear eye diagrams are observed when the wavelengths of modulated signals are stayed within almost passband of the 5th-order CROW.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA