Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(12): 2759-2768, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831332

RESUMO

CuWO4 has emerged in the last years as a ternary metal oxide material for photoanodes application in photoelectrochemical cells, thanks to its relatively narrow band gap, high stability and selectivity toward the oxygen evolution reaction, though largely limited by its poor charge separation efficiency. Aiming at overcoming this limitation, we investigate here the effects that Cu(II) ion substitution has on the photoelectrocatalytic (PEC) performance of copper tungstate. Optically transparent CuWO4 thin-film photoanodes, prepared via spin coating and containing different amounts of Ni(II) ions, were fully characterized via UV-Vis spectroscopy, XRD and SEM analyses, and their PEC performance was tested via linear sweep voltammetry, incident photon to current efficiency and internal quantum efficiency analyses. From tests performed in the presence of a hole scavenger-containing electrolyte, the charge injection and separation efficiencies of the electrodes were also calculated. Pure-phase crystalline and/or heterojunction materials were obtained with higher PEC performance compared to pure CuWO4, mainly due to a significantly enhanced charge separation efficiency in the bulk of the material.

2.
J Am Chem Soc ; 140(43): 14042-14045, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30296074

RESUMO

The dynamics of photopromoted electrons in BiVO4, WO3, and WO3/BiVO4 heterojunction electrodes has been directly probed by transient absorption (TA) midinfrared (mid-IR) spectroscopy in the picosecond to microsecond time range. By comparison of the dynamics recorded with the two individual oxides at 2050 cm-1 with that of the heterojunction system after excitation at different wavelengths, electron-transfer processes between selectively excited BiVO4 and WO3 have been directly tracked for the first time. These results support the charge carrier interactions which were previously hypothesized by probing the BiVO4 hole dynamics through TA spectroscopy in the visible range. Nanosecond mid-IR TA experiments confirmed that charge carrier separation occurs in WO3/BiVO4 electrodes under visible-light excitation, persisting up to the microsecond time scale.

3.
J Am Chem Soc ; 137(17): 5646-9, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25884483

RESUMO

We introduce the use of pure molten ortho-phosphoric acid (o-H3PO4) as an electrolyte for self-organizing electrochemistry. This electrolyte allows for the formation of self-organized oxide architectures (one-dimensional nanotubes, nanochannels, nanopores) on metals such as tungsten that up to now were regarded as very difficult to grow self-ordered anodic oxide structures. In this work, we show particularly the fabrication of thick, vertically aligned tungsten oxide nanochannel layers, with pore diameter of ca. 10 nm and illustrate their potential use in some typical applications.

4.
Phys Chem Chem Phys ; 17(7): 4864-9, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25607570

RESUMO

Cathodoluminescence spectroscopy is profitably exploited to study energy transfer mechanisms in Au and Pt/black TiO2 heterostructures. While Pt nanoparticles absorb light in the UV region, Au nanoparticles absorb light by surface plasmon resonance and interband transitions, both of them occurring in the visible region. The intra-bandgap states (oxygen vacancies) of black TiO2 play a key role in promoting both hot electron transfer and plasmonic resonant energy transfer from Au nanoparticles to the TiO2 semiconductor with a consequent photocatalytic H2 production increase. An innovative criterion is introduced for the design of plasmonic composites with increased efficiency under visible light.

5.
J Phys Chem A ; 119(19): 4433-8, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25390039

RESUMO

We report that 1-hydropyridinyl radicals (1-PyH(•)) photogenerated in solution react with dissolved CO2 en route to its 2e(-) reduction into carboxylic acids. The 254 nm excitation of pyridine (Py) in deaerated 2-PrOH/H2O mixtures saturated with 1 atm of CO2 yields a suite of products, among which we identified Na(HCOO)2(-) (m/z(-) = 113), C5H6NCOO(-) (m/z(-) = 124), and C5H10O2NCOO(-) (m/z(-) = 160) species by electrospray ionization mass spectrometry. These products demonstrably contain carboxylate functionalities that split CO2 neutrals via collisionally induced dissociation. We infer that 1-PyH(•) [from (1) (3)Py* + 2-PrOH → 1-PyH(•) + (•)PrOH] adds to CO2, in competition with radical-radical reactions, leading to intermediates that are in turn reduced by (•)PrOH into the observed species. The formation of carboxylates in this system, which is shown to require CO2, Py, 2-PrOH, and actinic radiation, amounts to the homogeneous 2e(-) reduction of CO2 by 2-PrOH initiated by Py*. We evaluate a rate constant (2) k2(1-PyH(•) + CO2 → (•)Py-1-COOH) ≈ O (10) M(-1) s(-1) and an activation energy E2 ≥ 9 kcal mol(-1) that are compatible with thermochemical estimates for this reaction.


Assuntos
Dióxido de Carbono/química , Radicais Livres/química , Processos Fotoquímicos , Piridinas/química , Ácidos Carboxílicos/química , Espectrometria de Massas por Ionização por Electrospray , Água/química
6.
Chemistry ; 19(19): 5841-4, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23519978

RESUMO

A little dopey: Ta-doped titania (TiO2) nanotube (NT) arrays can be grown by electrochemical anodization onto low-Ta-concentration (0.03-0.4 at % Ta) Ti-Ta alloys. Under optimized conditions (0.1 at % Ta, annealing at 650 °C and 7 µm thickness), Ta-doped TiO2 NT arrays show a significantly enhanced activity in photoelectrochemical water splitting under simulated sunlight conditions (see figure).

7.
Photochem Photobiol Sci ; 12(4): 595-601, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22930393

RESUMO

The effect of noble metal (Pt and Au) nanoparticle photodeposition on a series of NH4F-doped TiO2 photocatalysts calcined at 700 °C was investigated both in a thermodynamically down-hill reaction, i.e. the degradation of formic acid in aqueous suspension, and in an up-hill reaction, i.e. hydrogen production from methanol-water vapour mixtures. All photocatalysts were characterized by BET, XRD, UV-vis absorption and HRTEM analysis. Intriguing synergistic effects of simultaneous bulk and surface TiO2 modification were evidenced in both photocatalytic reactions, which can be interpreted in relation to the structural features of the materials. On one hand NH4F doping guarantees that the most active TiO2 anatase phase is stabilised up to high calcination temperature, ensuring high crystallinity and good photoinduced charge carriers production, on the other hand noble metal nanoparticles contribute in increasing the separation of photoproduced charge carriers, resulting in enhanced photocatalytic performances of the surface- and bulk-modified photocatalyst systems.

8.
Angew Chem Int Ed Engl ; 52(29): 7514-7, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23765440

RESUMO

Peas in a pod: A highly aligned Au(np)@TiO2 photocatalyst was formed by self-organizing anodization of a Ti substrate followed by dewetting of a gold thin film. This leads to exactly one Au nanoparticle (np) per TiO2 nanocavity. Such arrays are highly efficient photocatalysts for hydrogen generation from ethanol.

9.
ACS Appl Energy Mater ; 6(19): 10020-10029, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37830012

RESUMO

CuWO4 is a ternary semiconductor oxide with excellent visible light harvesting properties up to 550 nm and stability at high pH values, which make it a suitable material to build photoanodes for solar light conversion to hydrogen via water splitting. In this work, we studied the photoelectrochemical (PEC) performance of transparent CuWO4 electrodes with tunable light absorption and thickness, aiming at identifying the intrinsic bottlenecks of photogenerated charge carriers in this semiconductor. We found that electrodes with optimal CuWO4 thickness exhibit visible light activity due to the absorption of long-wavelength photons and a balanced electron and hole extraction from the oxide. The PEC performance of CuWO4 is light-intensity-dependent, with charge recombination increasing with light intensity and most photogenerated charge carriers recombining in bulk sites, as demonstrated by PEC tests performed in the presence of sacrificial agents or cocatalysts. The best-performing 580 nm thick CuWO4 electrode delivers a photocurrent of 0.37 mA cm-2 at 1.23 VSHE, with a 7% absorbed photon to current efficiency over the CuWO4 absorption spectrum.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37921705

RESUMO

WO3/BiVO4 heterojunction photoanodes can be efficiently employed in photoelectrochemical (PEC) cells for the conversion of water into molecular oxygen, the kinetic bottleneck of water splitting. Composite WO3/BiVO4 photoelectrodes possessing a nanoflake-like morphology have been synthesized through a multistep process and their PEC performance was investigated in comparison to that of WO3/BiVO4 photoelectrodes displaying a planar surface morphology and similar absorption properties and thickness. PEC tests, also in the presence of a sacrificial hole scavenger, electrochemical impedance analysis under simulated solar irradiation, and incident photon to current efficiency measurements highlighted that charge transport and charge recombination issues affecting the performance of the planar composite can be successfully overcome by nanostructuring the WO3 underlayer in nanoflake-like WO3/BiVO4 heterojunction electrodes.

11.
J Environ Manage ; 96(1): 86-90, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22208401

RESUMO

The beneficial effect of a TiO2-based photocatalytic treatment on the indoor air purification of a swine farm has been evaluated in a trial performed in two identical mechanically ventilated traditional weaning units, with 391 animals lodged in each of them. One unit was used as reference, whereas the walls of the second unit (260 m2) were coated with ca. 70 g m(-2) of TiO2 and irradiated with ten UV-A lamps. The environmental parameters (i.e. the ventilation rate, the internal and external temperature and relative humidity), together with NH3, CH4, CO2 and N2O concentrations in the exhaust ducts and PM10 emissions, were monitored in the two units throughout all of the production cycle (75 days). Significant decreases in CH4 concentration (ca. 27%, P < 0.05) and PM10 emission (ca. 17%, P < 0.01) were observed, together with an increase of the piglets' productive performance in the treated unit with respect to the reference one. Indeed, the ADG (Average Daily Gain of piglets) was 424 g vs. 414 g for the piglets lodged in the two units, respectively, with a significantly better feed conversion ratio (FCR, ratio between the food ingested by the animals and their weight gain) of 2.18 vs. 2.44 (P < 0.001). Therefore, the photocatalytic treatment with TiO2 coating had positive effects not only on methane concentration and particulate matter concentration and emission, but also significantly improved the feed conversion ratio of growing piglets, very likely due to the increased quality of indoor air, with positive economic repercussions for the farmer. Internal photocatalytic treatment in swine husbandry could thus be considered as a potential Best Available Technology (BAT).


Assuntos
Poluentes Ocupacionais do Ar/análise , Criação de Animais Domésticos/métodos , Pintura , Sus scrofa/crescimento & desenvolvimento , Titânio , Poluição do Ar em Ambientes Fechados , Amônia/análise , Ração Animal , Animais , Dióxido de Carbono/análise , Metano/análise , Material Particulado , Suínos , Temperatura , Desmame , Aumento de Peso
12.
ACS Appl Energy Mater ; 5(11): 13142-13148, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465258

RESUMO

Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO3/BiVO4 heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance when both oxides absorb light. Here we exploit the BiVO4 layer to sensitize WO3 to visible light and shield it from direct photoexcitation to overcome this efficiency loss. PEC experiments and ultrafast transient absorption spectroscopy performed by frontside (through BiVO4) or backside (through WO3) irradiating photoanodes with different BiVO4 layer thickness demonstrate that irradiation through BiVO4 is beneficial for charge separation. Optimized electrodes irradiated through BiVO4 show 40% higher photocurrent density compared to backside irradiation.

13.
Photochem Photobiol Sci ; 10(3): 355-60, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20820674

RESUMO

The effect of the crystalline phase of TiO(2) (anatase, rutile and brookite) on its photocatalytic activity in hydrogen production from methanol-water vapours has been investigated by testing a series of both home-made and commercial TiO(2) photocatalysts, either bare or surface-modified by deposition of a fixed amount, i.e. 1 wt%, of platinum as co-catalyst. For all of the TiO(2) samples the rate of hydrogen production increased by one order of magnitude upon Pt deposition, because of the ability of Pt to enhance the separation of photoproduced electron-hole pairs. Under irradiation in the 350-450 nm wavelength range, brookite and anatase showed similar photoactivities, both superior to that of rutile. By contrast, rutile, possessing a narrower band gap, was active also under visible light (λ > 400 nm), whereas no hydrogen evolution was observed with anatase and brookite under such conditions. Surface area proved to be a key parameter, strongly influencing photoactivity. However, as the particle size became ultra-small, the semiconductor absorption edge was blue-shifted because of size quantisation effects, with a consequent decrease in hydrogen production rate due to the smaller portion of incident photons absorbed by the photocatalyst.

14.
Photochem Photobiol Sci ; 10(3): 343-9, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20725691

RESUMO

Two series of doped titanium dioxide samples (S-TiO(2) and F-TiO(2)) were prepared by the sol-gel method in the presence of different amounts of dopant source (thiourea and NH(4)F, respectively), followed by calcination at 500, 600 or 700 °C, and characterised by BET, UV-vis absorption, XPS, HRTEM, XRD and EPR analyses. Reference undoped materials were prepared by the same synthetic procedure. Their photocatalytic activity under visible light was investigated employing the photocatalytic degradation of formic acid in aqueous suspension as test reaction. S-doped TiO(2) showed a photocatalytic activity quite similar to that of undoped materials. In this regard, the insertion of S, characterised by a relatively large ionic radius, into the TiO(2) crystalline structure appears rather difficult, as confirmed by XPS analysis. On the contrary, moderate F doping was beneficial in increasing the rate of formic acid photocatalytic degradation, especially for photocatalysts calcined at high temperature, consisting of highly crystalline pure anatase, in which the rate of detrimental charge carrier recombination was reduced. For both series of doped materials, high doping levels appear to limit the semiconductor photoactivity, probably due to the formation of a progressively increasing number of charge recombination centres. The EPR characterisation of the investigated doped TiO(2) samples evidenced the presence of nitrogen containing species (nitric oxide radical encapsulated in micro-void, with no photoactivity, and N(b)˙ species, active in visible light sensitisation) and of titanium reduced centres Ti(3+), due to charge imbalance consequent to dopant introduction in the TiO(2) lattice either in anionic (F(-)) or in cationic form (S(6+)).

15.
Phys Chem Chem Phys ; 13(40): 18217-27, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21909553

RESUMO

The photocatalytic behaviour of a series of ammonium fluoride (NH(4)F)-doped titania (TiO(2)) photocatalysts was investigated in the decomposition of acetic acid in aqueous suspensions and in the gas phase mineralization of acetaldehyde. Very similar photocatalytic activity trends, usually increasing with increasing the calcination temperature for a given nominal dopant amount, were obtained for the two test reactions. Moderately doped TiO(2) calcined at 700 °C, consisting of pure anatase, was the best performing photocatalyst in both reactions. The photocatalytic oxidation of acetic acid was investigated systematically as a function of irradiation wavelength, by collecting so-called action spectra. By comparing the shapes of the action spectra with those of the absorption spectra of the investigated photocatalysts a model is proposed, based on spectral features deconvolution, which allows a clear distinction between inactive light absorption and effective photoactivity in acetic acid decomposition.

16.
J Phys Chem C Nanomater Interfaces ; 125(10): 5692-5699, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35069964

RESUMO

CuWO4 is a ternary metal oxide semiconductor with promising properties for photoelectrochemical (PEC) water splitting and solar light conversion, due to its quite low band gap (2.3 eV) and high stability in an alkaline environment. Aiming at understanding the origin of the relatively low PEC efficiency attained with CuWO4 photoanodes, we here investigate transparent CuWO4 electrodes prepared by a simple solution-based method through the combination of femtosecond transient absorption spectroscopy with electrochemical, PEC, and photochromic characterizations. The very fast recombination dynamics of the charge carriers photogenerated in CuWO4, which is the reason for its low efficiency, is discussed in relation with its PEC performance and with the recently calculated band structure of this material, also in comparison with the behavior of other semiconductor oxides employed in PEC applications, in particular Fe2O3.

17.
ACS Appl Energy Mater ; 4(8): 8421-8431, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34485843

RESUMO

Photoelectrochemical solar energy conversion offers a way to directly store light into energy-rich chemicals. Photoanodes based on the WO3/BiVO4 heterojunction are most effective mainly thanks to the efficient separation of photogenerated charges. The WO3/BiVO4 interfacial space region in the heterojunction is investigated here with the increasing thickness of the BiVO4 layer over a WO3 scaffold. On the basis of X-ray diffraction analysis results, density functional theory simulations show a BiVO4 growth over the WO3 layer along the BiVO4 {010} face, driven by the formation of a stable interface with new covalent bonds, with a favorable band alignment and band bending between the two oxides. This crystal facet phase matching allows a smooth transition between the electronic states of the two oxides and may be a key factor ensuring the high efficiency attained with this heterojunction. The photoelectrochemical activity of the WO3/BiVO4 photoanodes depends on both the irradiation wavelength and the thickness of the visible-light-absorbing BiVO4 layer, a 75 nm thick BiVO4 layer on WO3 being best performing.

18.
J Phys Condens Matter ; 32(1): 014001, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514175

RESUMO

The PEC performance of WO3/BiVO4 heterojunction photoanodes with a fixed BiVO4 thick top layer and different WO3 layer thicknesses was investigated under backside irradiation, in comparison with the performance of the same electrodes without a top BiVO4 layer. While the performance of these latter increase with increasing WO3 thickness, the presence of a BiVO4 layer, besides leading to an effective sensitization up to 520 nm, leads to a decrease of incident photon to current efficiency in the short wavelength's range. After having excluded major WO3 filter effects, this has been attributed to charge carrier recombination effects occurring when both oxides get excited and becoming more relevant with increasing WO3 thickness and decreasing excitation wavelength.

19.
ACS Appl Energy Mater ; 3(7): 6956-6964, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33829150

RESUMO

The need for stable oxide-based semiconductors with a narrow band gap, able to maximize the exploitation of the visible light portion of the solar spectrum, is a challenging issue for photoelectrocatalytic (PEC) applications. In the present work, CuW1-x Mo x O4 (E g = 2.0 eV for x = 0.5), which exhibits a significantly reduced optical band gap E g compared with isostructural CuWO4 (E g = 2.3 eV), was investigated as a photoactive material for the preparation of photoanodes. CuW0.5Mo0.5O4 electrodes with different thicknesses (80-530 nm), prepared by a simple solution-based process in the form of multilayer films, effectively exhibit visible light photoactivity up to 650 nm (i.e., extended compared with CuWO4 photoanodes prepared by the same way). Furthermore, the systematic investigation on the effects on photoactivity of the CuW0.5Mo0.5O4 layer thickness evidenced that long-wavelength photons can better be exploited by thicker electrodes. PEC measurements in the presence of NaNO2, acting as a suitable hole scavenger ensuring enhanced photocurrent generation compared with that of water oxidation while minimizing dark currents, allowed us to elucidate the role that molybdenum incorporation plays on the charge separation efficiency in the bulk and on the charge injection efficiency at the photoanode surface. The adopted Mo for W substitution increases the visible light photoactivity of copper tungstate toward improved exploitation and storage of visible light into chemical energy via photoelectrocatalysis.

20.
J Hazard Mater ; 153(3): 1136-41, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17976904

RESUMO

The rate of 1,4-dichlorobenzene (1,4-DCB) degradation and mineralization in the aqueous phase was investigated either under direct photolysis or photocatalysis in the presence of commercial or sol-gel synthesized TiO2, or under sonolysis at 20 kHz with different power inputs. Two lamps, both emitting in the 340-400 nm wavelength range with different energy, were employed as irradiation sources. Photocatalysis ensured faster removal of 1,4-DCB with respect to sonolysis and direct photolysis. The highest degradation and mineralization rate was attained with the combined use of photocatalysis and sonolysis, i.e. under sonophotocatalytic conditions. The efficiency of the employed advanced oxidation techniques in 1,4-DCB degradation is discussed also in relation to their energy consumption, which might be decisive for their practical application.


Assuntos
Clorobenzenos , Sonicação , Titânio/química , Raios Ultravioleta , Poluentes Químicos da Água , Catálise , Clorobenzenos/química , Clorobenzenos/efeitos da radiação , Fotólise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA