Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; 34(10): 13445-13460, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32816366

RESUMO

We investigated the effect of chitinase-3-like protein 1 (CHI3L1) on glucose metabolism and its underlying mechanisms in skeletal muscle cells, and evaluated whether the observed effects are relevant in humans. CHI3L1 was associated with increased glucose uptake in skeletal muscles in an AMP-activated protein kinase (AMPK)-dependent manner, and with increased intracellular calcium levels via PAR2. The improvement in glucose metabolism observed in an intraperitoneal glucose tolerance test on male C57BL/6J mice supported this association. Inhibition of the CaMKK was associated with suppression of CHI3L1-mediated glucose uptake. Additionally, CHI3L1 was found to influence glucose uptake through the PI3K/AKT pathway. Results suggested that CHI3L1 stimulated the phosphorylation of AS160 and p38 MAPK downstream of AMPK and AKT, and the resultant GLUT4 translocation. In primary myoblast cells, stimulation of AMPK and AKT was observed in response to CHI3L1, underscoring the biological relevance of CHI3L1. CHI3L1 levels were elevated in cells under conditions that mimic exercise in vitro and in exercised mice in vivo, indicating that CHI3L1 is secreted during muscle contraction. Finally, similar associations between CHI3L1 and metabolic parameters were observed in humans alongside genotype associations between CHI3L1 and diabetes at the population level. CHI3L1 may be a potential therapeutic target for the treatment of diabetes.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Músculo Esquelético , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Proteína 1 Semelhante à Quitinase-3/sangue , Proteína 1 Semelhante à Quitinase-3/fisiologia , Estudos de Associação Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
2.
Breast Cancer Res ; 21(1): 115, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640742

RESUMO

BACKGROUND: Chemotherapy is a standard therapeutic regimen to treat triple-negative breast cancer (TNBC); however, chemotherapy alone does not result in significant improvement and often leads to drug resistance in patients. In contrast, combination therapy has proven to be an effective strategy for TNBC treatment. Whether metformin enhances the anticancer effects of cisplatin and prevents cisplatin resistance in TNBC cells has not been reported. METHODS: Cell viability, wounding healing, and invasion assays were performed on Hs 578T and MDA-MB-231 human TNBC cell lines to demonstrate the anticancer effects of combined cisplatin and metformin treatment compared to treatment with cisplatin alone. Western blotting and immunofluorescence were used to determine the expression of RAD51 and gamma-H2AX. In an in vivo 4T1 murine breast cancer model, a synergistic anticancer effect of metformin and cisplatin was observed. RESULTS: Cisplatin combined with metformin decreased cell viability and metastatic effect more than cisplatin alone. Metformin suppressed cisplatin-mediated RAD51 upregulation by decreasing RAD51 protein stability and increasing its ubiquitination. In contrast, cisplatin increased RAD51 expression in an ERK-dependent manner. In addition, metformin also increased cisplatin-induced phosphorylation of γ-H2AX. Overexpression of RAD51 blocked the metformin-induced inhibition of cell migration and invasion, while RAD51 knockdown enhanced cisplatin activity. Moreover, the combination of metformin and cisplatin exhibited a synergistic anticancer effect in an orthotopic murine model of 4T1 breast cancer in vivo. CONCLUSIONS: Metformin enhances anticancer effect of cisplatin by downregulating RAD51 expression, which represents a novel therapeutic target in TNBC management.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metformina/farmacologia , Rad51 Recombinase/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Metformina/administração & dosagem , Camundongos Endogâmicos BALB C , Rad51 Recombinase/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
3.
Int J Neuropsychopharmacol ; 22(6): 402-414, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31125414

RESUMO

BACKGROUND: Leukemia inhibitory factor, a novel myokine, is known to be associated with neural function, but the underlying molecular mechanism remains unclear. METHODS: HT-22 mouse hippocampal cells, primary hippocampal cells, and Drosophila Alzheimer's disease model were used to determine the effect of leukemia inhibitory factor on neurons. Immunoblot analysis and immunofluorescence method were used to analyze biological mechanism. RESULTS: Leukemia inhibitory factor increased Akt phosphorylation in a phosphoinositide-3-kinase-dependent manner in hippocampal cells. Leukemia inhibitory factor also increased the phosphorylation of the mammalian target of rapamycin and the downstream S6K. Leukemia inhibitory factor stimulated the phosphorylation of signal transducer and activator of transcription via extracellular signal-regulated kinases. Leukemia inhibitory factor increased c-fos expression through both Akt and extracellular signal-regulated kinases. Leukemia inhibitory factor blocked amyloid ß-induced neural viability suppression and inhibited amyloid ß-induced glucose uptake impairment through the block of amyloid ß-mediated insulin receptor downregulation. Leukemia inhibitory factor blocked amyloid ß-mediated induction of the autophagy marker, microtubule-associated protein 1A/1B-light chain 3. Additionally, in primary prepared hippocampal cells, leukemia inhibitory factor stimulated Akt and extracellular signal-regulated kinase, demonstrating that leukemia inhibitory factor has physiological relevance in vivo. Suppression of the autophagy marker, light chain 3II, by leukemia inhibitory factor was observed in a Drosophila model of Alzheimer's disease. CONCLUSIONS: These results demonstrate that leukemia inhibitory factor protects against amyloid ß-induced neurotoxicity via Akt/extracellular signal-regulated kinase-mediated c-fos induction, and thus suggest that leukemia inhibitory factor is a potential drug for Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Hipocampo/citologia , Fator Inibidor de Leucemia/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 3/biossíntese , Hipocampo/metabolismo , Fator Inibidor de Leucemia/biossíntese , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-fos/biossíntese , Receptor de Insulina/biossíntese , Receptor de Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
4.
Appl Radiat Isot ; 197: 110794, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37054663

RESUMO

A proton linac based boron neutron capture therapy system (A-BNCT, 10MeV, 4mA) was successfully developed in Korea. We performed in vitro experiments with U87 and SAS cells and revealed the efficacy of a binary therapy BNCT using epithermal neutrons and boronophenylalanine (BPA). The results revealed that BNCT showed cancer cell selectivity and caused cell death. Further in vitro studies can be a valuable method to characterize an A-BNCT system. We expect BNCT to become a treatment option for cancer patients.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/metabolismo , Prótons , Terapia por Captura de Nêutron de Boro/métodos , Nêutrons , Compostos de Boro/uso terapêutico , República da Coreia
5.
Life (Basel) ; 12(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36013445

RESUMO

Boron neutron capture therapy (BNCT) is a radiation therapy that selectively kills cancer cells and is being actively researched and developed around the world. In Korea, development of the proton linear accelerator-based BNCT system has completed development, and its anti-cancer effect in the U-87 MG subcutaneous xenograft model has been evaluated. To evaluate the efficacy of BNCT, we measured 10B-enriched boronophenylalanine (BPA) uptake in U-87 MG, FaDu, and SAS cells and evaluated cell viability by clonogenic assays. In addition, the boron concentration in the tumor, blood, and skin on the U-87 MG xenograft model was measured, and the tumor volume was measured for 4 weeks after BNCT. In vitro, the intracellular boron concentration was highest in the order of SAS, FaDu, and U-87 MG, and cell survival fractions decreased depending on the BPA treatment concentration and neutron irradiation dose. In vivo, the tumor volume was significantly decreased in the BNCT group compared to the control group. This study confirmed the anti-cancer effect of BNCT in the U-87 MG subcutaneous xenograft model. It is expected that the proton linear accelerator-based BNCT system developed in Korea will be a new option for radiation therapy for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA