RESUMO
DNA methylation profiles have been used to develop biomarkers of aging known as epigenetic clocks, which predict chronological age with remarkable accuracy and show promise for inferring health status as an indicator of biological age. Epigenetic clocks were first built to monitor human aging, but their underlying principles appear to be evolutionarily conserved, as they have now been successfully developed for many mammalian species. Here, we describe reliable and highly accurate epigenetic clocks shown to apply to 93 domestic dog breeds. The methylation profiles were generated using the mammalian methylation array, which utilizes DNA sequences that are conserved across all mammalian species. Canine epigenetic clocks were constructed to estimate age and also average time to death. We also present two highly accurate humandog dual species epigenetic clocks (R = 0.97), which may facilitate the ready translation from canine to human use (or vice versa) of antiaging treatments being developed for longevity and preventive medicine. Finally, epigenome-wide association studies here reveal individual methylation sites that may underlie the inverse relationship between breed weight and lifespan. Overall, we describe robust biomarkers to measure aging and, potentially, health status in canines.
Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Animais , DNA , Metilação de DNA/genética , Cães , Epigenômica , HumanosRESUMO
Extreme phenotypic diversity, a history of artificial selection, and socioeconomic value make domestic dog breeds a compelling subject for genomic research. Copy number variation (CNV) is known to account for a significant part of inter-individual genomic diversity in other systems. However, a comprehensive genome-wide study of structural variation as it relates to breed-specific phenotypes is lacking. We have generated whole genome CNV maps for more than 300 canids. Our data set extends the canine structural variation landscape to more than 100 dog breeds, including novel variants that cannot be assessed using microarray technologies. We have taken advantage of this data set to perform the first CNV-based genome-wide association study (GWAS) in canids. We identify 96 loci that display copy number differences across breeds, which are statistically associated with a previously compiled set of breed-specific morphometrics and disease susceptibilities. Among these, we highlight the discovery of a long-range interaction involving a CNV near MED13L and TBX3, which could influence breed standard height. Integration of the CNVs with chromatin interactions, long noncoding RNA expression, and single nucleotide variation highlights a subset of specific loci and genes with potential functional relevance and the prospect to explain trait variation between dog breeds.
Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Animais , Cães , Genoma , Genômica , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Whole genome re-sequencing data from dogs and wolves are now commonly used to study how natural and artificial selection have shaped the patterns of genetic diversity. Single nucleotide polymorphisms, microsatellites and variants in mitochondrial DNA have been interrogated for links to specific phenotypes or signals of domestication. However, copy number variation (CNV), despite its increasingly recognized importance as a contributor to phenotypic diversity, has not been extensively explored in canids. RESULTS: Here, we develop a new accurate probabilistic framework to create fine-scale genomic maps of segmental duplications (SDs), compare patterns of CNV across groups and investigate their role in the evolution of the domestic dog by using information from 34 canine genomes. Our analyses show that duplicated regions are enriched in genes and hence likely possess functional importance. We identify 86 loci with large CNV differences between dogs and wolves, enriched in genes responsible for sensory perception, immune response, metabolic processes, etc. In striking contrast to the observed loss of nucleotide diversity in domestic dogs following the population bottlenecks that occurred during domestication and breed creation, we find a similar proportion of CNV loci in dogs and wolves, suggesting that other dynamics are acting to particularly select for CNVs with potentially functional impacts. CONCLUSIONS: This work is the first comparison of genome wide CNV patterns in domestic and wild canids using whole-genome sequencing data and our findings contribute to study the impact of novel kinds of genetic changes on the evolution of the domestic dog.
Assuntos
Variações do Número de Cópias de DNA , Cães/genética , Lobos/genética , Animais , Cruzamento , Genômica , Duplicações Segmentares Genômicas , Análise de Sequência de DNARESUMO
Species persistence can be influenced by the amount, type, and distribution of diversity across the genome, suggesting a potential relationship between historical demography and resilience. In this study, we surveyed genetic variation across single genomes of 240 mammals that compose the Zoonomia alignment to evaluate how historical effective population size (Ne) affects heterozygosity and deleterious genetic load and how these factors may contribute to extinction risk. We find that species with smaller historical Ne carry a proportionally larger burden of deleterious alleles owing to long-term accumulation and fixation of genetic load and have a higher risk of extinction. This suggests that historical demography can inform contemporary resilience. Models that included genomic data were predictive of species' conservation status, suggesting that, in the absence of adequate census or ecological data, genomic information may provide an initial risk assessment.
Assuntos
Eutérios , Extinção Biológica , Variação Genética , Animais , Feminino , Gravidez , Eutérios/genética , Genoma , Densidade Demográfica , RiscoRESUMO
Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for seven major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications among the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.
Assuntos
Epigenômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Cromossomo YRESUMO
Captive breeding programmes represent the most intensive type of ex situ population management for threatened species. One example is the Cuvier's gazelle programme that started in 1975 with only four founding individuals, and after more than four decades of management in captivity, a reintroduction effort was undertaken in Tunisia in 2016, to establish a population in an area historically included within its range. Here, we aim to determine the genetic consequences of this reintroduction event by assessing the genetic diversity of the founder stock as well as of their descendants. We present the first whole-genome sequencing dataset of 30 Cuvier's gazelles including captive-bred animals, animals born in Tunisia after a reintroduction and individuals from a genetically unrelated Moroccan population. Our analyses revealed no difference between the founder and the offspring cohorts in genome-wide heterozygosity and inbreeding levels, and in the amount and length of runs of homozygosity. The captive but unmanaged Moroccan gazelles have the lowest genetic diversity of all genomes analysed. Our findings demonstrate that the Cuvier's gazelle captive breeding programme can serve as source populations for future reintroductions of this species. We believe that this study can serve as a starting point for global applications of genomics to the conservation plan of this species.
RESUMO
Mammalian Y chromosomes are often neglected from genomic analysis. Due to their inherent assembly difficulties, high repeat content, and large ampliconic regions, only a handful of species have their Y chromosome properly characterized. To date, just a single human reference quality Y chromosome, of European ancestry, is available due to a lack of accessible methodology. To facilitate the assembly of such complicated genomic territory, we developed a novel strategy to sequence native, unamplified flow sorted DNA on a MinION nanopore sequencing device. Our approach yields a highly continuous assembly of the first human Y chromosome of African origin. It constitutes a significant improvement over comparable previous methods, increasing continuity by more than 800%. Sequencing native DNA also allows to take advantage of the nanopore signal data to detect epigenetic modifications in situ. This approach is in theory generalizable to any species simplifying the assembly of extremely large and repetitive genomes.
Assuntos
População Negra/genética , Cromossomos Humanos Y , Ilhas de CpG , Metilação de DNA , Humanos , Cariotipagem , Anotação de Sequência Molecular , Análise de Sequência de DNARESUMO
The genomic changes underlying both early and late stages of horse domestication remain largely unknown. We examined the genomes of 14 early domestic horses from the Bronze and Iron Ages, dating to between ~4.1 and 2.3 thousand years before present. We find early domestication selection patterns supporting the neural crest hypothesis, which provides a unified developmental origin for common domestic traits. Within the past 2.3 thousand years, horses lost genetic diversity and archaic DNA tracts introgressed from a now-extinct lineage. They accumulated deleterious mutations later than expected under the cost-of-domestication hypothesis, probably because of breeding from limited numbers of stallions. We also reveal that Iron Age Scythian steppe nomads implemented breeding strategies involving no detectable inbreeding and selection for coat-color variation and robust forelimbs.
Assuntos
Cruzamento , Domesticação , Cavalos/genética , Animais , DNA Antigo , DNA Mitocondrial/genética , Variação Genética , Genoma , Crista Neural , Característica Quantitativa Herdável , Seleção GenéticaRESUMO
The chimpanzee is arguably the most important species for the study of human origins. A key resource for these studies is a high-quality reference genome assembly; however, as with most mammalian genomes, the current iteration of the chimpanzee reference genome assembly is highly fragmented. In the current iteration of the chimpanzee reference genome assembly (Pan_tro_2.1.4), the sequence is scattered across more then 183 000 contigs, incorporating more than 159 000 gaps, with a genome-wide contig N50 of 51 Kbp. In this work, we produce an extensive and diverse array of sequencing datasets to rapidly assemble a new chimpanzee reference that surpasses previous iterations in bases represented and organized in large scaffolds. To this end, we show substantial improvements over the current release of the chimpanzee genome (Pan_tro_2.1.4) by several metrics, such as increased contiguity by >750% and 300% on contigs and scaffolds, respectively, and closure of 77% of gaps in the Pan_tro_2.1.4 assembly gaps spanning >850 Kbp of the novel coding sequence based on RNASeq data. We further report more than 2700 genes that had putatively erroneous frame-shift predictions to human in Pan_tro_2.1.4 and show a substantial increase in the annotation of repetitive elements. We apply a simple 3-way hybrid approach to considerably improve the reference genome assembly for the chimpanzee, providing a valuable resource for the study of human origins. Furthermore, we produce extensive sequencing datasets that are all derived from the same cell line, generating a broad non-human benchmark dataset.