Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 39(21): 4162-4178, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30862664

RESUMO

Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the κ opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative real-time-PCR, florescence in situ hybridization, Western blotting and GTPgS autoradiography an upregulation of expression and the function of κ opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared with surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward-related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.SIGNIFICANCE STATEMENT We show that KORs are sufficient to drive the tonic-aversive component of chronic pain; the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high comorbidity with chronic pain) and substance abuse. Indeed, coexisting psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).


Assuntos
Dor Crônica/metabolismo , Dor Crônica/psicologia , Emoções/fisiologia , Percepção da Dor/fisiologia , Receptores Opioides kappa/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Long-Evans
2.
Anesthesiology ; 129(3): 544-556, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29912007

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Recovery from pain after surgery is faster after cesarean delivery than after other abdominal procedures. The authors hypothesized that recovery in rats after surgery could be reversed by antagonism of spinal oxytocin or vasopressin receptors, that there may be a sex difference, and that spinal oxytocin innervation could change after surgery. METHODS: Male and female rats underwent partial spinal nerve ligation surgery. Effects of nonselective and selective oxytocin and vasopressin 1A receptor antagonists on mechanical hypersensitivity during partial recovery were assessed (n = 8 to 14/group). Oxytocin immunoreactivity in the dorsal horn of the spinal cord (n = 7 to 8/group) and messenger RNA (mRNA) expression for oxytocin-binding receptors in dorsal root ganglia and spinal cord (n = 8/group) were measured. RESULTS: Intrathecal injection of oxytocin and vasopressin receptor antagonists were similarly effective at reducing withdrawal threshold (in all experiments from 22 [19, 26] median [first quartile, third quartile]) g to 8.3 [6.4, 12] g after injection) in both sexes, while having no or minimal effects in animals without surgery. Oxytocin fiber immunoreactivity was 3- to 5-fold greater in lumbar than other regions of the spinal cord and was increased more than 2-fold in lumbar cord ipsilateral to surgery. Injury was also associated with a 6.5-fold increase in oxytocin receptor and a 2-fold increase in vasopressin 1A receptor messenger RNA expression in the L4 dorsal root ganglion ipsilateral to surgery. CONCLUSIONS: These findings suggest that the capacity for oxytocin signaling in the spinal cord increases after surgery and that spinal oxytocin signaling plays ongoing roles in both sexes in recovery from mechanical hypersensitivity after surgery with known nerve injury.


Assuntos
Receptores de Ocitocina/fisiologia , Receptores de Vasopressinas/fisiologia , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Nervos Espinhais/lesões , Nervos Espinhais/cirurgia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Feminino , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Injeções Espinhais , Ligadura , Masculino , Ocitocina/antagonistas & inibidores , Ocitocina/fisiologia , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/antagonistas & inibidores , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nervos Espinhais/efeitos dos fármacos
3.
Neuron ; 109(11): 1848-1860.e8, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861942

RESUMO

Naturalistic escape requires versatile context-specific flight with rapid evaluation of local geometry to identify and use efficient escape routes. It is unknown how spatial navigation and escape circuits are recruited to produce context-specific flight. Using mice, we show that activity in cholecystokinin-expressing hypothalamic dorsal premammillary nucleus (PMd-cck) cells is sufficient and necessary for context-specific escape that adapts to each environment's layout. In contrast, numerous other nuclei implicated in flight only induced stereotyped panic-related escape. We reasoned the dorsal premammillary nucleus (PMd) can induce context-specific escape because it projects to escape and spatial navigation nuclei. Indeed, activity in PMd-cck projections to thalamic spatial navigation circuits is necessary for context-specific escape induced by moderate threats but not panic-related stereotyped escape caused by perceived asphyxiation. Conversely, the PMd projection to the escape-inducing dorsal periaqueductal gray projection is necessary for all tested escapes. Thus, PMd-cck cells control versatile flight, engaging spatial navigation and escape circuits.


Assuntos
Reação de Fuga , Hipotálamo Posterior/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Navegação Espacial , Tálamo/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans
4.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32859725

RESUMO

µ-Opioid receptors (MORs) are densely expressed in different brain regions known to mediate reward. One such region is the striatum where MORs are densely expressed, yet the role of these MOR populations in modulating reward is relatively unknown. We have begun to address this question by using a series of genetically engineered mice based on the Cre recombinase/loxP system to selectively delete MORs from specific neurons enriched in the striatum: dopamine 1 (D1) receptors, D2 receptors, adenosine 2a (A2a) receptors, and choline acetyltransferase (ChAT). We first determined the effects of each deletion on opioid-induced locomotion, a striatal and dopamine-dependent behavior. We show that MOR deletion from D1 neurons reduced opioid (morphine and oxycodone)-induced hyperlocomotion, whereas deleting MORs from A2a neurons resulted in enhanced opioid-induced locomotion, and deleting MORs from D2 or ChAT neurons had no effect. We also present the effect of each deletion on opioid intravenous self-administration. We first assessed the acquisition of this behavior using remifentanil as the reinforcing opioid and found no effect of genotype. Mice were then transitioned to oxycodone as the reinforcer and maintained here for 9 d. Again, no genotype effect was found. However, when mice underwent 3 d of extinction training, during which the drug was not delivered, but all cues remained as during the maintenance phase, drug-seeking behavior was enhanced when MORs were deleted from A2a or ChAT neurons. These findings show that these selective MOR populations play specific roles in reward-associated behaviors.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Analgésicos Opioides/farmacologia , Animais , Camundongos , Morfina , Neurônios , Receptores Opioides mu/genética , Recompensa
5.
Neurosci Biobehav Rev ; 106: 3-4, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31561848

RESUMO

This issue features a selection of articles that explore mechanisms of processes that contribute to behaviors that are associated with addiction. We have identified selected articles which focus on the mechanisms underlying maladaptive consumption and affective dysregulation. In addition to the articles within this issue, we highlight the necessity of inclusive study design and acknowledgement of individual drug vulnerabilities.


Assuntos
Comportamento Aditivo/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Humanos
6.
Nutrients ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416242

RESUMO

Opioids are highly addictive substances with a relapse rate of over 90%. While preclinical models of chronic opioid exposure exist for studying opioid dependence, none recapitulate the relapses observed in human opioid addiction. The mechanisms associated with opioid dependence, the accompanying withdrawal symptoms, and the relapses that are often observed months or years after opioid dependence are poorly understood. Therefore, we developed a novel model of chronic opioid exposure whereby the level of administration is self-directed with periods of behavior acquisition, maintenance, and then extinction alternating with reinstatement. This profile arguably mirrors that seen in humans, with initial opioid use followed by alternating periods of abstinence and relapse. Recent evidence suggests that dietary interventions that reduce inflammation, including omega-3 polyunsaturated fatty acids (n-3 PUFAs), may reduce substance misuse liability. Using the self-directed intake model, we characterize the observed profile of opioid use and demonstrate that an n-3-PUFA-enriched diet ameliorates oxycodone-seeking behaviors in the absence of drug availability and reduces anxiety. Guided by the major role gut microbiota have on brain function, neuropathology, and anxiety, we profile the microbiome composition and the effects of chronic opioid exposure and n-3 PUFA supplementation. We demonstrate that the withdrawal of opioids led to a significant depletion in specific microbiota genera, whereas n-3 PUFA supplementation increased microbial richness, phylogenetic diversity, and evenness. Lastly, we examined the activation state of microglia in the striatum and found that n-3 PUFA supplementation reduced the basal activation state of microglia. These preclinical data suggest that a diet enriched in n-3 PUFAs could be used as a treatment to alleviate anxiety induced opioid-seeking behavior and relapse in human opioid addiction.


Assuntos
Analgésicos Opioides , Comportamento Animal/efeitos dos fármacos , Suplementos Nutricionais , Comportamento de Procura de Droga/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Oxicodona , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/microbiologia , Transtornos Relacionados ao Uso de Opioides/psicologia , Recidiva , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/microbiologia , Síndrome de Abstinência a Substâncias/psicologia
7.
Front Psychiatry ; 9: 119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740351

RESUMO

Prescription opioid misuse is an ongoing and escalating epidemic. Although these pharmacological agents are highly effective analgesics prescribed for different types of pain, opioids also induce euphoria, leading to increasing diversion and misuse. Opioid use and related mortalities have developed in spite of initial claims that OxyContin, one of the first opioids prescribed in the USA, was not addictive in the presence of pain. These claims allayed the fears of clinicians and contributed to an increase in the number of prescriptions, quantity of drugs manufactured, and the unforeseen diversion of these drugs for non-medical uses. Understanding the history of opioid drug development, the widespread marketing campaign for opioids, the immense financial incentive behind the treatment of pain, and vulnerable socioeconomic and physical demographics for opioid misuse give perspective on the current epidemic as an American-born problem that has expanded to global significance. In light of the current worldwide opioid epidemic, it is imperative that novel opioids are developed to treat pain without inducing the euphoria that fosters physical dependence and addiction. We describe insights from preclinical findings on the properties of opioid drugs that offer insights into improving abuse-deterrent formulations. One finding is that the ability of some agonists to activate one pathway over another, or agonist bias, can predict whether several novel opioid compounds bear promise in treating pain without causing reward among other off-target effects. In addition, we outline how the pharmacokinetic profile of each opioid contributes to their potential for misuse and discuss the emergence of mixed agonists as a promising pipeline of opioid-based analgesics. These insights from preclinical findings can be used to more effectively identify opioids that treat pain without causing physical dependence and subsequent opioid abuse.

8.
Neuropharmacology ; 81: 95-100, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24495399

RESUMO

Gabapentin has shown to be effective in animals and humans with acute postoperative and chronic pain. Yet the mechanisms by which gabapentin reduces pain have not been fully addressed. The current study performed in vivo microdialysis in the locus coeruleus (LC) in normal and spinal nerve ligated (SNL) rats to examine the effect of gabapentin on extracellular glutamate concentration and its mechanisms of action with focus on presynaptic GABA-B receptors, astroglial glutamate transporter-1 (GLT-1), and interactions with α2δ subunits of voltage-gated Ca(2+) channels and endogenous noradrenaline. Basal extracellular concentration and tissue content of glutamate in the LC were greater in SNL rats than normal ones. Intravenously administered and LC-perfused gabapentin increased extracellular glutamate concentration in the LC. The net amount of glutamate increased by gabapentin is larger in SNL rats compared with normal ones, although the percentage increases from the baseline did not differ. The gabapentin-related α2δ ligand pregabalin increased extracellular glutamate concentration in the LC, whereas another α2δ ligand, 3-exo-aminobicyclo [2.2.1] heptane-2-exo-carboxylic acid (ABHCA), did not. Selective blockade by the dihydrokainic acid or knock-down of GLT-1 by the small interfering RNA abolished the gabapentin-induced glutamate increase in the LC, whereas blockade of GABA-B receptors by the CGP-35348 and depletion of noradrenalin by the dopamine-ß-hydroxylase antibody conjugated to saporin did not. These results suggest that gabapentin induces glutamate release from astrocytes in the LC via GLT-1-dependent mechanisms to stimulate descending inhibition. The present study also demonstrates that this target of gabapentin in astrocytes does not require interaction with α2δ subunits in neurons.


Assuntos
Aminas/farmacologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/efeitos dos fármacos , Ácidos Cicloexanocarboxílicos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Locus Cerúleo/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Aminas/uso terapêutico , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Ácidos Cicloexanocarboxílicos/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Antagonistas GABAérgicos/farmacologia , Gabapentina , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/patologia , Norepinefrina/metabolismo , Compostos Organofosforados/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/metabolismo , Nervos Espinhais/cirurgia , Fatores de Tempo , Ácido gama-Aminobutírico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA