Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 565(7740): 490-494, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626969

RESUMO

Apical growth in plants initiates upon seed germination, whereas radial growth is primed only during early ontogenesis in procambium cells and activated later by the vascular cambium1. Although it is not known how radial growth is organized and regulated in plants, this system resembles the developmental competence observed in some animal systems, in which pre-existing patterns of developmental potential are established early on2,3. Here we show that in Arabidopsis the initiation of radial growth occurs around early protophloem-sieve-element cell files of the root procambial tissue. In this domain, cytokinin signalling promotes the expression of a pair of mobile transcription factors-PHLOEM EARLY DOF 1 (PEAR1) and PHLOEM EARLY DOF 2 (PEAR2)-and their four homologues (DOF6, TMO6, OBP2 and HCA2), which we collectively name PEAR proteins. The PEAR proteins form a short-range concentration gradient that peaks at protophloem sieve elements, and activates gene expression that promotes radial growth. The expression and function of PEAR proteins are antagonized by the HD-ZIP III proteins, well-known polarity transcription factors4-the expression of which is concentrated in the more-internal domain of radially non-dividing procambial cells by the function of auxin, and mobile miR165 and miR166 microRNAs. The PEAR proteins locally promote transcription of their inhibitory HD-ZIP III genes, and thereby establish a negative-feedback loop that forms a robust boundary that demarks the zone of cell division. Taken together, our data establish that during root procambial development there exists a network in which a module that links PEAR and HD-ZIP III transcription factors integrates spatial information of the hormonal domains and miRNA gradients to provide adjacent zones of dividing and more-quiescent cells, which forms a foundation for further radial growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Câmbio/crescimento & desenvolvimento , Câmbio/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Câmbio/citologia , Câmbio/metabolismo , Divisão Celular/genética , Sinais (Psicologia) , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Floema/citologia , Floema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica
2.
Development ; 147(8)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198154

RESUMO

Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.


Assuntos
Arabidopsis/embriologia , Padronização Corporal , Feixe Vascular de Plantas/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Padronização Corporal/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Ácidos Indolacéticos/metabolismo , Feixe Vascular de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Elementos de Resposta/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transcrição Gênica
3.
Plant Physiol ; 170(2): 627-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26644504

RESUMO

A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies.


Assuntos
Arabidopsis/genética , Vetores Genéticos , Arabidopsis/citologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes Reporter , Especificidade de Órgãos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão
4.
Curr Biol ; 29(3): 520-529.e6, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30686737

RESUMO

To create a three-dimensional structure, plants rely on oriented cell divisions and cell elongation. Oriented cell divisions are specifically important in procambium cells of the root to establish the different vascular cell types [1, 2]. These divisions are in part controlled by the auxin-controlled TARGET OF MONOPTEROS5 (TMO5) and LONESOME HIGHWAY (LHW) transcription factor complex [3-7]. Loss-of-function of tmo5 or lhw clade members results in strongly reduced vascular cell file numbers, whereas ectopic expression of both TMO5 and LHW can ubiquitously induce periclinal and radial cell divisions in all cell types of the root meristem. TMO5 and LHW interact only in young xylem cells, where they promote expression of two direct target genes involved in the final step of cytokinin (CK) biosynthesis, LONELY GUY3 (LOG3) and LOG4 [8, 9] Therefore, CK was hypothesized to act as a mobile signal from the xylem to trigger divisions in the neighboring procambium cells [3, 6]. To unravel how TMO5/LHW-dependent cytokinin regulates cell proliferation, we analyzed the transcriptional responses upon simultaneous induction of both transcription factors. Using inferred network analysis, we identified AT2G28510/DOF2.1 as a cytokinin-dependent downstream target gene. We further showed that DOF2.1 controls specific procambium cell divisions without inducing other cytokinin-dependent effects such as the inhibition of vascular differentiation. In summary, our results suggest that DOF2.1 and its closest homologs control vascular cell proliferation, thus leading to radial expansion of the root.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proliferação de Células/genética , Citocininas/metabolismo , Fatores Genéricos de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Câmbio/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Transativadores/genética , Transativadores/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Xilema/fisiologia
5.
Curr Biol ; 27(8): 1241-1247, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28392107

RESUMO

Plant stem cell niches, the meristems, require long-distance transport of energy metabolites and signaling molecules along the phloem tissue. However, currently it is unclear how specification of phloem cells is controlled. Here we show that the genes SUPPRESSOR OF MAX2 1-LIKE3 (SMXL3), SMXL4, and SMXL5 act as cell-autonomous key regulators of phloem formation in Arabidopsis thaliana. The three genes form an uncharacterized subclade of the SMXL gene family that mediates hormonal strigolactone and karrikin signaling. Strigolactones are endogenous signaling molecules regulating shoot and root branching [1] whereas exogenous karrikin molecules induce germination after wildfires [2]. Both activities depend on the F-box protein and SCF (Skp, Cullin, F-box) complex component MORE AXILLARY GROWTH2 (MAX2) [3-5]. Strigolactone and karrikin perception leads to MAX2-dependent degradation of distinct SMXL protein family members, which is key for mediating hormonal effects [6-12]. However, the nature of events immediately downstream of SMXL protein degradation and whether all SMXL proteins mediate strigolactone or karrikin signaling is unknown. In this study we demonstrate that, within the SMXL gene family, specifically SMXL3/4/5 deficiency results in strong defects in phloem formation, altered sugar accumulation, and seedling lethality. By comparing protein stabilities, we show that SMXL3/4/5 proteins function differently to canonical strigolactone and karrikin signaling mediators, although being functionally interchangeable with those under low strigolactone/karrikin signaling conditions. Our observations reveal a fundamental mechanism of phloem formation and indicate that diversity of SMXL protein functions is essential for a steady fuelling of plant meristems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lactonas/farmacologia , Floema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Floema/efeitos dos fármacos , Floema/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Methods Mol Biol ; 1217: 3-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25287193

RESUMO

Plants have evolved strategies for short- and long-distance communication to coordinate plant development and to adapt to changing environmental conditions. Plasmodesmata (PD) are intercellular nanochannels that provide an effective pathway for both selective and nonselective movement of various molecules that function in diverse biological processes. Numerous non-cell-autonomous proteins (NCAP) and small RNAs have been identified that have crucial roles in cell fate determination and organ patterning during development. Both the density and aperture size of PD are developmentally regulated, allowing formation of spatial symplastic domains for establishment of tissue-specific developmental programs. The PD size exclusion limit (SEL) is controlled by reversible deposition of callose, as well as by some PD-associated proteins. Although a large number of PD-associated proteins have been identified, many of their functions remain unknown. Despite the fact that PD are primarily membranous structures, surprisingly very little is known about their lipid composition. Thus, future studies in PD biology will provide deeper insights into the high-resolution structure and tightly regulated functions of PD and the evolution of PD-mediated cell-to-cell communication in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Plasmodesmos/metabolismo , Transdução de Sinais , Transporte Biológico , Comunicação Celular , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Glucanos/metabolismo , Células Vegetais/ultraestrutura , Desenvolvimento Vegetal/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plasmodesmos/ultraestrutura
7.
Front Plant Sci ; 5: 44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24596574

RESUMO

Plasmodesmata (PD) are cytoplasmic channels that connect neighboring cells for cell-to-cell communication. PD structure and function vary temporally and spatially to allow formation of symplastic domains during different stages of plant development. Reversible deposition of callose at PD plays an important role in controlling molecular trafficking through PD by regulating their size exclusion limit. Previously, we reported several semi-dominant mutants for CALLOSE SYNTHASE 3 (CALS3) gene, which overproduce callose at PD in Arabidopsis. By combining two of these mutations in a LexA-VP16-ER (XVE)-based estradiol inducible vector system, a tool known as the "icals3m system" was developed to temporally obstruct the symplastic connections in a specified spatial domain. The system has been successfully tested and used, in combination with other methods, to investigate the route for mobile signals such as the SHR protein, microRNA165/6, and cytokinins in Arabidopsis roots, and also to understand the role of symplastic domain formation during lateral root development. We envision that this tool may also be useful for identifying tissue-specific symplastic regulatory networks and to analyze symplastic movement of metabolites.

8.
Cell Adh Migr ; 7(1): 27-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23076211

RESUMO

In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA