RESUMO
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Assuntos
Fator de Crescimento Insulin-Like I , Neuroproteção , Humanos , Adulto , Fator de Crescimento Insulin-Like I/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Fatores de Crescimento Neural/metabolismoRESUMO
Biological characterization of genetic variants identified in genome-wide association studies (GWAS) remains a substantial challenge. Here we used human-induced pluripotent stem cells (iPSC) and their neural derivatives to characterize common variants on chromosome 3p22 that have been associated by GWAS with major mental illnesses. IPSC-derived neural progenitor cells carrying the risk allele of the single nucleotide polymorphism (SNP), rs9834970, displayed lower baseline TRANK1 expression that was rescued by chronic treatment with therapeutic dosages of valproic acid (VPA). VPA had the greatest effects on TRANK1 expression in iPSC, NPC, and astrocytes. Although rs9834970 has no known function, we demonstrated that a nearby SNP, rs906482, strongly affects binding by the transcription factor, CTCF, and that the high-affinity allele usually occurs on haplotypes carrying the rs9834970 risk allele. Decreased expression of TRANK1 perturbed expression of many genes involved in neural development and differentiation. These findings have important implications for the pathophysiology of major mental illnesses and the development of novel therapeutics.
Assuntos
Citocinas/genética , Células-Tronco Neurais/efeitos dos fármacos , Ácido Valproico/farmacologia , Alelos , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ácido Valproico/metabolismoRESUMO
We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5' and 3' UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD.
Assuntos
Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Predisposição Genética para Doença , Variação Genética , Neurônios/fisiologia , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Transdução de Sinais/genética , População Branca/genéticaRESUMO
Genome-wide (GWAS) and copy number variant (CNV) association studies have reproducibly identified numerous risk alleles associated with bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ), but biological characterization of these alleles lags gene discovery, owing to the inaccessibility of live human brain cells and inadequate animal models for human psychiatric conditions. Human-derived induced pluripotent stem cells (iPSCs) provide a renewable cellular reagent that can be differentiated into living, disease-relevant cells and 3D brain organoids carrying the full complement of genetic variants present in the donor germline. Experimental studies of iPSC-derived cells allow functional characterization of risk alleles, establishment of causal relationships between genes and neurobiology, and screening for novel therapeutics. Here we report the creation and availability of an iPSC resource comprising clinical, genomic, and cellular data obtained from genetically isolated families with BD and related conditions. Results from the first 324 study participants, 61 of whom have validated pluripotent clones, show enrichment of rare single nucleotide variants and CNVs overlapping many known risk genes and pathogenic CNVs. This growing iPSC resource is available to scientists pursuing functional genomic studies of BD and related conditions.
Assuntos
Transtorno Depressivo Maior , Células-Tronco Pluripotentes Induzidas , Transtornos Psicóticos , Esquizofrenia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transtornos Psicóticos/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Genômica , Estudo de Associação Genômica AmplaRESUMO
Acetylcholine acting via metabotropic receptors plays a key role in learning and memory by regulating synaptic plasticity and circuit activity. However, a recent overall view of the effects of muscarinic acetylcholine receptors (mAChRs) on excitatory and inhibitory long-term synaptic plasticity and on circuit activity is lacking. This review focusses on specific aspects of the regulation of synaptic plasticity and circuit activity by mAChRs in the hippocampus and cortex. Acetylcholine increases the excitability of pyramidal neurons, facilitating the generation of dendritic Ca2+-spikes, NMDA-spikes and action potential bursts which provide the main source of Ca2+ influx necessary to induce synaptic plasticity. The activation of mAChRs induced Ca2+ release from intracellular IP3-sensitive stores is a major player in the induction of a NMDA independent long-term potentiation (LTP) caused by an increased expression of AMPA receptors in hippocampal pyramidal neuron dendritic spines. In the neocortex, activation of mAChRs also induces a long-term enhancement of excitatory postsynaptic currents. In addition to effects on excitatory synapses, a single brief activation of mAChRs together with short repeated membrane depolarization can induce a long-term enhancement of GABA A type (GABAA) inhibition through an increased expression of GABAA receptors in hippocampal pyramidal neurons. By contrast, a long term depression of GABAA inhibition (iLTD) is induced by muscarinic receptor activation in the absence of postsynaptic depolarizations. This iLTD is caused by an endocannabinoid-mediated presynaptic inhibition that reduces the GABA release probability at the terminals of inhibitory interneurons. This bidirectional long-term plasticity of inhibition may dynamically regulate the excitatory/inhibitory balance depending on the quiescent or active state of the postsynaptic pyramidal neurons. Therefore, acetylcholine can induce varied effects on neuronal activity and circuit behavior that can enhance sensory detection and processing through the modification of circuit activity leading to learning, memory and behavior.
Assuntos
Região CA1 Hipocampal , Plasticidade Neuronal , Região CA1 Hipocampal/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Células Piramidais/metabolismo , Receptores Muscarínicos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismoRESUMO
Autism, characterized by profound impairment in social interactions and communicative skills, is the most common neurodevelopmental disorder, and its underlying molecular mechanisms remain unknown. Ca(2+)-dependent activator protein for secretion 2 (CADPS2; also known as CAPS2) mediates the exocytosis of dense-core vesicles, and the human CADPS2 is located within the autism susceptibility locus 1 on chromosome 7q. Here we show that Cadps2-knockout mice not only have impaired brain-derived neurotrophic factor release but also show autistic-like cellular and behavioral phenotypes. Moreover, we found an aberrant alternatively spliced CADPS2 mRNA that lacks exon 3 in some autistic patients. Exon 3 was shown to encode the dynactin 1-binding domain and affect axonal CADPS2 protein distribution. Our results suggest that a disturbance in CADPS2-mediated neurotrophin release contributes to autism susceptibility.
Assuntos
Processamento Alternativo , Transtorno Autístico/genética , Transtorno Autístico/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte Vesicular/genética , Animais , Proteínas de Ligação ao Cálcio/deficiência , Morte Celular , Aberrações Cromossômicas , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Comportamento Materno , Camundongos , Camundongos Knockout , Células de Purkinje/patologia , Deleção de Sequência , Proteínas de Transporte Vesicular/deficiênciaRESUMO
For more than half a decade, lithium has been successfully used to treat bipolar disorder. Worldwide, it is considered the first-line mood stabilizer. Apart from its proven antimanic and prophylactic effects, considerable evidence also suggests an antisuicidal effect in affective disorders. Lithium is also effectively used to augment antidepressant drugs in the treatment of refractory major depressive episodes and prevent relapses in recurrent unipolar depression. In contrast to many psychiatric drugs, lithium has outlasted various pharmacotherapeutic 'fashions', and remains an indispensable element in contemporary psychopharmacology. Nevertheless, data from pharmacogenetic studies of lithium are comparatively sparse, and these studies are generally characterized by small sample sizes and varying definitions of response. Here, we present an international effort to elucidate the genetic underpinnings of lithium response in bipolar disorder. Following an initiative by the International Group for the Study of Lithium-Treated Patients (www.IGSLI.org) and the Unit on the Genetic Basis of Mood and Anxiety Disorders at the National Institute of Mental Health,lithium researchers from around the world have formed the Consortium on Lithium Genetics (www.ConLiGen.org) to establish the largest sample to date for genome-wide studies of lithium response in bipolar disorder, currently comprising more than 1,200 patients characterized for response to lithium treatment. A stringent phenotype definition of response is one of the hallmarks of this collaboration. ConLiGen invites all lithium researchers to join its efforts.
Assuntos
Antimaníacos/farmacologia , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Compostos de Lítio/farmacologia , National Institute of Mental Health (U.S.) , Antimaníacos/efeitos adversos , Antimaníacos/uso terapêutico , Humanos , Cooperação Internacional , Compostos de Lítio/efeitos adversos , Compostos de Lítio/uso terapêutico , Farmacogenética , Fenótipo , Estados UnidosRESUMO
It is suggested that chromosome 18p11 is a susceptibility region for both bipolar disorder and schizophrenia. Aiming to identify susceptibility gene(s), we investigated a family whose members have either schizophrenia or schizophrenia-spectrum psychosis and carried a t(18;21)(p11.1;p11.1) translocation. Fluorescence in situ hybridization showed that the breakpoint on chromosome 21 was localized to a bacterial artificial chromosome (BAC) clone RP11-2503J9, which contained coding sequences for transmembrane phosphatase with tensin homology, although this gene was not disrupted. On chromosome 18p, the break point was narrowed to BAC clone RP11-527H14. In silico sequence analysis of this clone identified possible pseudo genes and gene fragments but no intact genes. RP11-527H14 also showed sites of cross hybridization, including 21p11.1. To test for a position effect on 18p11 sequences translocated to 21p11, we performed quantitative RT-PCR to measure the expression of the candidate gene C18orf1 in translocation carriers, but found no significant differences from controls in lymphoblastoid cells.
Assuntos
Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 21/genética , Esquizofrenia/genética , Translocação Genética/genética , Linhagem Celular , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Células Clonais , Biologia Computacional , Éxons/genética , Etiquetas de Sequências Expressas , Família , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Proteínas de Membrana/genética , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND: SERT I425V, an uncommon missense single nucleotide polymorphism producing a gain-of-function of the serotonin transporter (SERT), was originally found to segregate with a primarily obsessive-compulsive disorder (OCD) but complexly comorbid phenotype in two unrelated families. OBJECTIVE: As two individuals with SERT I425V and OCD also had Asperger syndrome (AS), an autism spectrum disorder, and as other rare SERT variants have recently shown significant associations with autism, we set out to extend our original OCD study by genotyping additional autism/AS and OCD samples. METHODS: Case-control association study of SERT I425V in 210 AS/autism probands and 215 controls, plus 335 OCD probands and their family members. RESULTS: SERT I425V was not found in any of the individuals with AS/autism, OCD alone or OCD comorbid with AS and other disorders, or in controls. This results in new estimates of SERT I425V having a 1.5% prevalence in 530 individuals with OCD from five unrelated families genotyped by us and by one other group and a 0.23% frequency in four control populations totaling 1300 individuals, yielding a continuing significant OCD-control difference (Fisher's exact test corrected for family coefficient of identity P=0.004, odds ratio=6.54). CONCLUSION: As several other uncommon, less well quantitated genetic variations occur with an OCD phenotype, including chromosomal anomalies and some other rare gene variants (SGCE, GCH1 and SLITRK1), a tentative conclusion is that OCD resembles other complex disorders in being etiologically heterogeneous and in having both highly penetrant familial subtypes associated with rare alleles or chromosomal anomalies, as well as having a more common, polygenetic form that may involve polymorphisms in such genes as BDNF, COMT, GRIN2beta, TPH2, HTR2A and SLC1A1.
Assuntos
Síndrome de Asperger/genética , Transtorno Autístico/genética , Isoleucina/genética , Transtorno Obsessivo-Compulsivo/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Valina/genética , Adolescente , Adulto , Sequência de Bases , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência MolecularRESUMO
OBJECTIVES: Defects of neurodevelopmental processes are suggested to underlie the pathogenesis of bipolar disorder. Down syndrome cell adhesion molecule (DSCAM), a member of neural immunoglobulin superfamily playing a diverse role for neural development, is mapped to chromosome 21q22, a linkage locus for bipolar disorder, and is, therefore, an interesting candidate for the disease. METHODS: We performed a variation screening of the gene and association studies in 22 multiplex bipolar pedigrees of Caucasian descent and 119 Japanese patients with bipolar disorder and 140 controls. Expression levels of DSCAM were also examined in postmortem brains from the Stanley Medical Research Institute. RESULTS: We found 27 single nucleotide polymorphisms in DSCAM. Possible associations of SNP DC141 (IVS27-15A>G; P=0.042) and DC142 (IVS29+328C>A; P=0.036) were observed in pedigree samples, and G allele of DC141 was correlated with increased expression levels of DSCAM (P=0.038) in postmortem brains. Possible association of DC136 (4749C>T), which is in the same haplotype block with DC141 and DC142, was detected in Japanese populations (P=0.049). CONCLUSIONS: These results suggest the possible contribution of DSCAM gene in bipolar disorder, and warrant further investigations.
Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Adulto , Encéfalo/metabolismo , Estudos de Casos e Controles , Moléculas de Adesão Celular , Análise Mutacional de DNA , Éxons/genética , Feminino , Regulação da Expressão Gênica , Haplótipos , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Mudanças Depois da Morte , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , População Branca/genéticaRESUMO
Genetic linkage studies in both bipolar affective disorder (BPAD) and schizophrenia have implicated overlapping regions of chromosome 22q. We previously reported that BPAD pedigrees containing multiple members with psychotic symptoms showed suggestive linkage to chromosome 22q12.3. Now we have tested 189 single nucleotide polymorphisms (SNPs) spanning a 3 Mb region around the linkage peak for association with BPAD in 305 families, unrelated cases, and controls. SNPs were selected in or near genes, resulting in coverage at a density of 1 SNP per 6.7 kb across the 22 annotated genes in the region. The strongest signal emerged from family-based association analysis of an 11-SNP, 54 kb haplotype straddling the gene HMG2L1 and part of TOM1. A 3-marker haplotype of SNPs within TOM1 was associated with BPAD (allele-wise P = 0.0011) and with psychotic BPAD (allele-wise P = 0.00049). As hypothesized, the mean odds ratio for the risk alleles across the region was 1.39 in the psychotic but only 0.96 in the non-psychotic subset. Genotype-wise analyses yielded similar results, but the psychotic/non-psychotic distinction was more pronounced with mean odds ratios of 1.91 versus 0.8. Permutation of genotype-wise results for rs2413338 in HMG2L1 showed an empirical P = 0.037 for the difference between subsets. HMG2L1 is a negative regulator of Wnt signaling, a pathway of interest in psychotic BPAD as it is activated by both mood stabilizer and anti-psychotic medications. Further work is needed to confirm these results and uncover the functional variation underlying the association signal.
Assuntos
Transtorno Bipolar/genética , Cromossomos Humanos Par 22 , Proteína HMGB2/genética , Proteínas de Grupo de Alta Mobilidade/genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Estudos de Casos e Controles , Mapeamento Cromossômico , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Wnt/genética , Proteínas Wnt/metabolismoRESUMO
Lithium is an effective mood stabilizer for bipolar disorder patients and its therapeutic effect may involve inhibition of inositol monophosphatase activity. In humans, the enzyme is encoded by two genes, IMPA1 and IMPA2. IMPA2 maps to 18p11.2, a genomic interval for which evidence of linkage to bipolar disorder has been supported by several reports. We performed a genetic association study in Japanese cohorts (496 patients with bipolar disorder and 543 control subjects). Interestingly, we observed association of IMPA2 promoter single nucleotide polymorphisms (SNPs) (-461C and -207T) with bipolar disorder, the identical SNPs reported previously in a different population. In vitro promoter assay and genetic haplotype analysis showed that the combination of (-461C)-(-207T)-(-185A) drove enhanced transcription and the haplotypes containing (-461C)-(-207T)-(-185A) contributed to risk for bipolar disorder. Expression study on post-mortem brains revealed increased transcription from the IMPA2 allele that harbored (-461C)-(-207T)-(-185A) in the frontal cortex of bipolar disorder patients. The examination of allele-specific expressions in post-mortem brains did not support genomic imprinting of IMPA2, which was suggested nearby genomic locus. Contrasting to a prior report, therapeutic concentrations of lithium could not suppress the transcription of IMPA2 mRNA, and the mood-stabilizing effect of lithium is, if IMPA2 was one of the targets of lithium, deemed to be generated via inhibition of enzymatic reaction rather than transcriptional suppression. In conclusion, the present study suggests that a promoter haplotype of IMPA2 possibly contributes to risk for bipolar disorder by elevating IMPA2 levels in the brain, albeit the genetic effect varies among populations.
Assuntos
Transtorno Bipolar/genética , Cromossomos Humanos Par 18 , Regulação da Expressão Gênica/fisiologia , Monoéster Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas/fisiologia , Risco , Adulto , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Humanos , Cloreto de Lítio/farmacologia , Masculino , Pessoa de Meia-Idade , Neuroblastoma , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transcrição Gênica/fisiologia , TransfecçãoRESUMO
BACKGROUND: Linkage of bipolar disorder to a broad region on chromosome 13q has been supported in several studies including a meta-analysis on genome scans. Subsequent reports have shown that variations in the DAOA (G72) locus on 13q33 display association with bipolar disorder but these may not account for all of the linkage evidence in the region. OBJECTIVE: To identify additional susceptibility loci on 13q32-q33 by linkage disequilibrium mapping and explore the impact of phenotypic heterogeneity on association. METHODS: In the initial phase, 98 single nucleotide polymorphism (SNPs) located on 13q32-q33 were genotyped on 285 probands with bipolar disorder and their parents were drawn from families in the NIMH Genetics Initiative consortium for bipolar disorder (NIMH1-4) and two other series. Fine scale mapping using one family series (NIMH1-2) as the test sample was targeted on a gene that displayed the highest evidence of association. A secondary analysis of familial component phenotypes of bipolar disorder was conducted. RESULTS: Three of seven SNPs in DOCK9, a gene that encodes an activator of the Rho-GTPase Cdc42, showed significant excess allelic transmission (P=0.0477-0.00067). Fine scale mapping on DOCK9 yielded evidence of association at nine SNPs in the gene (P=0.02-0.006). Follow-up tests detected excess transmission of the same allele of rs1340 in two out of three other sets of families. The association signals were largely attributable to maternally transmitted alleles (rs1927568: P=0.000083; odds ratio=3.778). A secondary analysis of familial component phenotypes of bipolar disorder detected significant association across multiple DOCK9 markers for racing thoughts, psychosis, delusion during mania and course of illness indicators. CONCLUSION: These results suggest that DOCK9 contributes to both risk and increased illness severity in bipolar disorder. We found evidence for the effect of phenotypic heterogeneity on association. To our knowledge this is the first report to implicate DOCK9 or the Rho-GTPase pathway in the etiology of bipolar disorder.
Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença , Variação Genética , Fatores de Troca do Nucleotídeo Guanina/genética , Polimorfismo de Nucleotídeo Único , Transtorno Bipolar/fisiopatologia , Família , Feminino , Humanos , Desequilíbrio de Ligação , Masculino , Fenótipo , Índice de Gravidade de DoençaRESUMO
Rheumatoid arthritis (RA) is a chronic inflammatory disease with predominant joint involvement and possible systemic compromise, which leads to a handicapped status and poor quality of life. An optimal approach to treat RA requires early and intensive intervention with close monitoring of treatment response. Tumor necrosis factor (TNF) blockers are recommended in cases of active RA after the unsuccessful use of effective disease-modifying antirheumatic drugs (DMARDs); even adding them to treatment or replacing these drugs. Anti-TNF therapies have been demonstrated to reduce significant joint damage and to relieve symptoms during a prolonged time (see Scott and Kingsley, 2006). The efficacy of infliximab in an open-label trial is summarized with respect to speed of onset of action, durability of response, and its correlation between clinical and laboratory parameters. Safety for long-term treatment is also summarized. We studied 105 RA patients with more than 3 years' history of disease during 24 months on i.v. infliximab (75 completed study). We evaluated ACR responses at base line, and at 1, 6, 12, 16, 52, 77, and 104 weeks. Morning stiffness, swollen and tender joints, HAQ, SF-36% (PCS/MCS), polymerase chain reaction (PCR), erythrosedimentation rate (ESR), transaminases, rheumatoid factor (RF) levels, hemogram, and adverse events profile were all assessed. The treatment offered rapid and sustained clinical improvements as revealed by ACR responses and marked changes in the parameters previously described. Important changes were made in functional status and acute-phase reactants. Finally, infliximab was considered well tolerated and did not affect the safety profile of this trial.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/enzimologia , Artrite Reumatoide/patologia , Feminino , Saúde , Humanos , Imunoterapia , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/patologia , Infliximab , Masculino , Pessoa de Meia-Idade , Dor/tratamento farmacológico , Dor/imunologia , Inquéritos e Questionários , Fatores de Tempo , Transaminases/metabolismo , Resultado do TratamentoRESUMO
Association of the G72/G30 locus with schizophrenia and bipolar disorder has now been reported in several studies. The G72/G30 locus may be one of several that account for the evidence of linkage that spans a broad region of chromosome 13q. However, the story of G72/G30 is complex. Our meta-analysis of published association studies shows highly significant evidence of association between nucleotide variations in the G72/G30 region and schizophrenia, along with compelling evidence of association with bipolar disorder. But the associated alleles and haplotypes are not identical across studies, and some strongly associated variants are located approximately 50 kb telomeric of G72. Interestingly, G72 and G30 are transcribed in opposite directions; hence, their transcripts could cross-regulate translation. A functional native protein and functional motifs for G72 or G30 remain to be demonstrated. The interaction of G72 with d-amino acid oxidase, itself of interest as a modulator of N-methyl-d-aspartate receptors through regulation of d-serine levels, has been reported in one study and could be a key functional link that deserves further investigation. The association findings in the G72/G30 region, among the most compelling in psychiatry, may expose an important molecular pathway involved in susceptibility to schizophrenia and bipolar disorder.
Assuntos
Transtorno Bipolar/genética , Esquizofrenia/genética , Animais , Cromossomos Humanos Par 13 , Modelos Animais de Doenças , Ligação Genética/genética , Humanos , Desequilíbrio de LigaçãoRESUMO
BACKGROUND: Genetic variations in the serotonin receptor 3A (HTR3A) and 3B (HTR3B) genes, positioned in tandem on chromosome 11q23.2, have been shown to be associated with psychiatric disorders in samples of European ancestry. But the polymorphisms highlighted in these reports map to different locations in the two genes, therefore it is unclear which gene exerts a stronger effect on susceptibility. METHODS: To determine the haplotype block structure in the genomic regions of HTR3A and HTR3B, and to examine whether genetic variations in the region show evidence of association with schizophrenia and affective disorder in the Japanese, we performed haplotype-based case-control analysis using 29 polymorphisms. RESULTS: Two haplotype blocks each were revealed for HTR3A and HTR3B in Japanese samples. In HTR3B, haplotype block 2 that included a nonsynonymous single nucleotide polymorphism (SNP), yielded evidence of association with major depression in females (global p = .0023). Analysis employing genome-wide SNPs using the STRUCTURE program did not detect population stratification in the samples. CONCLUSIONS: Our results suggest an important role for HTR3B in major depression in women and also raise the possibility that previously proposed disease-associated SNPs in the HTR3A/B region in Caucasians are in linkage disequilibrium with haplotype block 2 of HTR3B in the Japanese.
Assuntos
Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Receptores 5-HT3 de Serotonina/genética , Adulto , Bases de Dados Genéticas , Éxons/genética , Feminino , Frequência do Gene , Testes Genéticos , Genótipo , Haplótipos , Humanos , Íntrons/genética , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/epidemiologia , Transtornos do Humor/genética , Mutação/genética , Polimorfismo Genético/genética , Polimorfismo de Nucleotídeo Único/genética , Escalas de Graduação Psiquiátrica , Esquizofrenia/epidemiologia , Esquizofrenia/genéticaRESUMO
The hippocampus receives cholinergic projections from the medial septal nucleus and Broca's diagonal band that terminate in the CA1, CA3, and dentate gyrus regions (Frotscher and Leranth, 1985). Glutamatergic synapses between CA3 and CA1 pyramidal neurons are presynaptically inhibited by acetylcholine (ACh), via activation of muscarinic ACh receptors (mAChRs) at the terminals of Schaffer collaterals (SCs) (Hounsgaard, 1978; Fernández de Sevilla et al., 2002, 2003). There are two types of SC-CA1 pyramidal neuron synapses. One type, called functional synapse, shows postsynaptic alpha- amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-receptor mediated currents at resting potential (Vm) and both AMPA and N-methyl-D-aspartate receptor (NMDAR)-mediated currents when depolarized. The other type, termed silent synapse, only displays postsynaptic NMDAR-mediated currents at depolarized Vms, but does not respond at the resting Vm (Isaac et al., 1995). Using hippocampal slices obtained from young Wistar rats, we examined the effects of activation of cholinergic afferents at the stratum oriens/alveus on excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of SCs. We also tested the action of the nonhydrolyzable cholinergic agonist carbamylcholine chloride (CCh) on EPSCs evoked by minimal stimulation of SCs (which activates a single or very few synapses) in functional and silent synapses.
Assuntos
Hipocampo/fisiologia , Células Piramidais/fisiologia , Receptores Muscarínicos/fisiologia , Transmissão Sináptica/fisiologia , Animais , Carbacol/farmacologia , Potenciais Evocados/fisiologia , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/fisiologiaRESUMO
A 65-year-old man with a history of combined pelvic external beam radiation therapy (EBRT) and brachytherapy for prostatic adenocarcinoma 15 years prior underwent total pelvic exenteration for presumed rectal sarcoma with prostatic invasion. Pathology revealed carcinosarcoma of prostatic origin. This patient exhibited the longest reported interval between initial presentation with prostatic adenocarcinoma and development of carcinosarcoma. This case is also the first reported case of prostatic carcinosarcoma occurring after combined EBRT and brachytherapy. The increasing use of such combination high-dose radiation therapy may potentially lead to an increased incidence of secondary malignancies such as prostatic carcinosarcoma in the future.
Assuntos
Adenocarcinoma/radioterapia , Carcinossarcoma/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias Primárias Múltiplas/patologia , Neoplasias da Próstata/radioterapia , Neoplasias Retais/patologia , Adenocarcinoma/patologia , Idoso , Biópsia por Agulha , Braquiterapia/métodos , Carcinossarcoma/cirurgia , Terapia Combinada , Seguimentos , Humanos , Imuno-Histoquímica , Radioisótopos de Irídio/uso terapêutico , Masculino , Recidiva Local de Neoplasia/cirurgia , Estadiamento de Neoplasias , Neoplasias Primárias Múltiplas/cirurgia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Induzidas por Radiação/cirurgia , Exenteração Pélvica , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , Neoplasias Retais/cirurgia , Fatores de Tempo , Resultado do TratamentoRESUMO
BACKGROUND: The gamma-aminobutyric acid (GABA) neurotransmitter system has been implicated in the pathogenesis of mood disorders. The GABRA1 gene encodes one of the subunits of GABA-A receptor and is located on human chromosome 5q34-q35, which is a region reportedly linked to mood disorders. We examined the GABRA1 gene as a candidate for mood disorders. METHODS: We performed mutation screening of GABRA1 in 24 Japanese bipolar patients and evaluated associations in Japanese case-control subjects consisting of 125 patients with bipolar disorder, 147 patients with depressive disorders, and 191 healthy control subjects. Associations were confirmed in the National Institute of Mental Health (NIMH) Initiative Bipolar Pedigrees, which consists of 88 multiplex pedigrees with 480 informative persons. RESULTS: We identified 13 polymorphisms in the GABRA1 gene. Nonsynonymous mutations were not found. Association of a specific haplotype with affective disorders was suggested in the Japanese case-control population (corrected p=.0008). This haplotype association was confirmed in the NIMH pedigrees (p=.007). CONCLUSIONS: These results indicate that the GABRA1 gene may play a role in the etiology of bipolar disorders.
Assuntos
Expressão Gênica/genética , Haplótipos/genética , Transtornos do Humor/genética , Mutação Puntual/genética , Receptores de GABA-A/genética , Alelos , Estudos de Casos e Controles , Cromossomos Humanos Par 5/genética , Análise Mutacional de DNA , Éxons/genética , Feminino , Genótipo , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genéticaRESUMO
BACKGROUND: We have reported genetic linkage between bipolar disorder and markers on chromosome 6q16.3-22.1 in the National Institute of Mental Health Genetics Initiative wave 3 pedigrees. Here we test for: 1) robustness of the linkage to differing analysis methods, genotyping error, and gender-specific maps; 2) parent-of-origin effects; and 3) interaction with markers within the schizophrenia linkage region on chromosome 6p. METHODS: Members of 245 families ascertained through a sibling pair affected with bipolar I or schizoaffective-bipolar disorder were genotyped with 18 markers spanning chromosome 6. Nonparametric linkage analysis was performed. RESULTS: Linkage to 6q is robust to analysis method, gender-specific map differences, and genotyping error. The locus confers a 1.4-fold increased risk. Affected siblings share the maternal more often than the paternal chromosome (p =.006), which could reflect a maternal parent-of-origin effect. There is a positive correlation between family-specific linkage scores on 6q and those on 6p22.2 (r =.26; p <.0001). Linkage analysis for each locus conditioned on evidence of linkage to the other increases the evidence for linkage at both loci (p <.0005). Logarithm of the odds (LOD) scores increased from 2.26 to 5.42 on 6q and from.35 to 2.26 on 6p22.2. CONCLUSIONS: These results support linkage of bipolar disorder to 6q, uncover a maternal parent-of-origin effect, and demonstrate an interaction of this locus with one on chromosome 6p22.2, previously linked only to schizophrenia.