Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Biotechnol ; 20(1): 31, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552895

RESUMO

BACKGROUND: Immunotoxin is a hybrid protein consisting of a toxin moiety that is linked to a targeting moiety for the purpose of specific elimination of target cells. Toxins used in traditional immunotoxins are practically difficult to be produced in large amount, have poor tissue penetration and a complex internalization process. We hypothesized that the smaller HALT-1, a cytolysin derived from Hydra magnipapillata, can be used as the toxin moiety in construction of a recombinant immunotoxin. RESULTS: In this study, pro-inflammatory macrophage was selected as the target cell due to its major roles in numerous inflammatory and autoimmune disorders. We aimed to construct macrophage-targeted recombinant immunotoxins by combining HALT-1 with anti-CD64-scFv in two orientations, and to assess whether their cytotoxic activity and binding capability could be preserved upon molecular fusion. The recombinant immunotoxins, HALT-1-scFv and scFv-HALT-1, were successfully constructed and expressed in Escherichia coli (E. coli). Our data showed that HALT-1 still exhibited significant cytotoxicity against CD64+ and CD64- cell lines upon fusion with anti-CD64 scFv, although it had half cytotoxic activity as compared to HALT-1 alone. As positioning HALT-1 at N- or C-terminus did not affect its potency, the two constructs demonstrated comparable cytotoxic activities with IC50 lower in CD64+ cell line than in CD64- cell line. In contrast, the location of targeting moieties anti-CD64 scFv at C-terminal end was crucial in maintaining the scFv binding capability. CONCLUSIONS: HALT-1 could be fused with anti-CD64-scFv via a fsexible polypeptide linker. Upon the successful production of this recombinant HALT-1 scFv fusion protein, HALT-1 was proven effective for killing two human cell lines. Hence, this preliminary study strongly suggested that HALT-1 holds potential as the toxin moiety in therapeutic cell targeting.


Assuntos
Hydra/efeitos dos fármacos , Hydra/imunologia , Imunotoxinas/imunologia , Animais , Linhagem Celular , Cnidários , Escherichia coli/metabolismo , Humanos , Receptores de IgG , Anticorpos de Cadeia Única , Toxinas Biológicas
2.
MethodsX ; 10: 102073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865650

RESUMO

Hydra actinoporin-like toxin-1 (HALT-1) has been isolated from Hydra magnipapillata and is highly cytolytic against various human cells including erythrocyte. Previously, recombinant HALT-1 (rHALT-1) was expressed in Escherichia coli and purified by the nickel affinity chromatography. In this study, we improved the purification of rHALT-1 by two-step purifications. Bacterial cell lysate containing rHALT-1 was subjected to the sulphopropyl (SP) cation exchange chromatography with different buffers, pHs, and NaCl concentrations. The results indicated that both phosphate and acetate buffers facilitated the strong binding of rHALT-1 to SP resins, and the buffers containing 150 mM and 200 mM NaCl, respectively, removed protein impurities but retain most rHALT-1 in the column. When combining the nickel affinity chromatography and the SP cation exchange chromatography, the purity of rHALT-1 was highly enhanced. In subsequent cytotoxicity assays, 50% of cells could be lysed at ∼18 and ∼22 µg/mL of rHALT-1 purified with phosphate and acetate buffers, respectively.•HALT-1 is a soluble α-pore-forming toxin of 18.38 kDa.•rHALT-1 was purified by nickel affinity chromatography followed by SP cation exchange chromatography.•The cytotoxicity of purified rHALT-1 using 2-step purifications via either phosphate or acetate buffer was comparable to those previously reported.

3.
Sci Rep ; 12(1): 11844, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831345

RESUMO

Methotrexate (MTX) is the most widely used disease-modifying anti-rheumatic drug (DMARD) for rheumatoid arthritis (RA). Many studies have attempted to understand the genetic risk factors that affect the therapeutic outcomes in RA patients treated with MTX. Unlike other studies that focus on the populations of Caucasians, Indian and east Asian countries, this study investigated the impacts of six single nucleotide polymorphisms (SNPs) that are hypothesized to affect the outcomes of MTX treatment in Malaysian RA patients. A total of 647 RA patients from three ethnicities (NMalay = 153; NChinese = 326; NIndian = 168) who received MTX monotherapy (minimum 15 mg per week) were sampled from three hospitals in Malaysia. SNPs were genotyped in patients using TaqMan real-time PCR assay. Data obtained were statistically analysed for the association between SNPs and MTX efficacy and toxicity. Analysis of all 647 RA patients indicated that none of the SNPs has influence on either MTX efficacy or MTX toxicity according to the Chi-square test and binary logistic regression. However, stratification by self-identified ancestries revealed that two out of six SNPs, ATIC C347G (rs2372536) (OR 0.5478, 95% CI 0.3396-0.8835, p = 0.01321) and ATIC T675C (rs4673993) (OR 0.5247, 95% CI 0.3248-0.8478, p = 0.008111), were significantly associated with MTX adequate response in RA patients with Malay ancestry (p < 0.05). As for the MTX toxicity, no significant association was identified for any SNPs selected in this study. Taken all together, ATIC C347G and ATIC T675C can be further evaluated on their impact in MTX efficacy using larger ancestry-specific cohort, and also incorporating high-order gene-gene and gene-environment interactions.


Assuntos
Antirreumáticos , Artrite Reumatoide , Antirreumáticos/uso terapêutico , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Humanos , Malásia , Redes e Vias Metabólicas , Metotrexato , Polimorfismo de Nucleotídeo Único
4.
Sci Rep ; 11(1): 20649, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667248

RESUMO

Actinoporins are a family of α-pore-forming toxins (α-PFTs) that have been identified in sea anemones. Recently, a freshwater Hydra Actinoporin-Like Toxin (HALT) gene family was found in Hydra magnipapillata. Unlike sea anemone actinoporins that use sphingomyelin as their main recognition target, the HALTs proteins may recognise alternative lipid molecules as their target. To unveil the structural insights into lipid preference of HALTs protein as compared to sea anemone actinoporins, we have determined the first crystal structure of actinoporin-like toxin, HALT-1 at 1.43 Å resolution with an acetylated lysine residue K76. Despite the overall structure of HALT-1 sharing a high structural similarity to sea anemone actinoporins, the atomic resolution structure revealed several unique structural features of HALT-1 that may influence the lipid preference and oligomerisation interface. The HALT-1 contains a RAG motif in place of the highly conserved RGD motif found in sea anemone actinoporins. The RAG motif contributed to a sharper ß9-ß10 turn, which may sway its oligomerisation interface in comparison to sea anemone actinoporins. In the lipid-binding region, the HALT-1 contains a shorter α2 helix and a longer α2-ß9 loop due to deletion and subsequently an insertion of five amino acid residues in comparison to the sea anemone actinoporins. Structure comparison and molecular docking analysis further revealed that the HALT-1 lipid-binding site may favour sphingolipids with sulfate or phosphate head group more than the sphingomyelin. The structure of HALT-1 reported here provides a new insight for a better understanding of the evolution and lipid recognition mechanism of actinoporin.

5.
Toxicon ; 133: 153-161, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28478056

RESUMO

Hydra actinoporin-like toxin-1 (HALT-1) is a 20.8 kDa pore-forming toxin isolated from Hydra magnipapillata. HALT-1 shares structural similarity with actinoporins, a family that is well known for its haemolytic and cytolytic activity. However, the precise pore-forming mechanism of HALT-1 remains an open question since little is known about the specific target binding for HALT-1. For this reason, a comprehensive proteomic analysis was performed using affinity purification and SILAC-based mass spectrometry to identify potential protein-protein interactions between mammalian HeLa cell surface proteins and HALT-1. A total of 4 mammalian proteins was identified, of which only folate receptor alpha was further verified by ELISA. Our preliminary results highlight an alternative-binding mode of HALT-1 to the human plasma membrane. This is the first evidence showing that HALT-1, an actinoporin-like protein, binds to a membrane protein, the folate receptor alpha. This study would advance our understanding of the molecular basis of toxicity of pore-forming toxins and provide new insights in the production of more potent inhibitors for the toxin-membrane receptor interactions.


Assuntos
Hydra , Toxinas Marinhas/química , Proteínas Citotóxicas Formadoras de Poros/química , Animais , Cromatografia de Afinidade , Receptor 1 de Folato/metabolismo , Células HeLa , Humanos , Toxinas Marinhas/toxicidade , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Ligação Proteica , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA