Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Am J Epidemiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38061757

RESUMO

The COVID-19 pandemic has highlighted the need to use infection testing databases to rapidly estimate effectiveness of prior infection in preventing reinfection ($P{E}_S$) by novel SARS-CoV-2 variants. Mathematical modeling was used to demonstrate a theoretical foundation for applicability of the test-negative, case-control study design to derive $P{E}_S$. Apart from the very early phase of an epidemic, the difference between the test-negative estimate for $P{E}_S$ and true value of $P{E}_S$ was minimal and became negligible as the epidemic progressed. The test-negative design provided robust estimation of $P{E}_S$ and its waning. Assuming that only 25% of prior infections are documented, misclassification of prior infection status underestimated $P{E}_S$, but the underestimate was considerable only when >50% of the population was ever infected. Misclassification of latent infection, misclassification of current active infection, and scale-up of vaccination all resulted in negligible bias in estimated $P{E}_S$. The test-negative design was applied to national-level testing data in Qatar to estimate $P{E}_S$ for SARS-CoV-2. $P{E}_S$ against SARS-CoV-2 Alpha and Beta variants was estimated at 97.0% (95% CI: 93.6-98.6) and 85.5% (95% CI: 82.4-88.1), respectively. These estimates were validated using a cohort study design. The test-negative design offers a feasible, robust method to estimate protection from prior infection in preventing reinfection.

2.
Clin Infect Dis ; 75(1): e1188-e1191, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34657152

RESUMO

Beta (B.1.351)-variant coronavirus disease 2019 (COVID-19) disease was investigated in Qatar. Compared with the Alpha (B.1.1.7) variant, odds (95% confidence interval) of progressing to severe disease, critical disease, and COVID-19-related death were 1.24-fold (1.11-1.39), 1.49-fold (1.13-1.97), and 1.57-fold (1.03-2.43) higher, respectively, for the Beta variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética
3.
Clin Infect Dis ; 73(7): e1830-e1840, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33315061

RESUMO

BACKGROUND: Risk of reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. We assessed the risk and incidence rate of documented SARS-CoV-2 reinfection in a cohort of laboratory-confirmed cases in Qatar. METHODS: All SARS-CoV-2 laboratory-confirmed cases with at least 1 polymerase chain reaction-positive swab that was ≥45 days after a first positive swab were individually investigated for evidence of reinfection. Viral genome sequencing of the paired first positive and reinfection viral specimens was conducted to confirm reinfection. RESULTS: Out of 133 266 laboratory-confirmed SARS-CoV-2 cases, 243 persons (0.18%) had at least 1 subsequent positive swab ≥45 days after the first positive swab. Of these, 54 cases (22.2%) had strong or good evidence for reinfection. Median time between the first swab and reinfection swab was 64.5 days (range, 45-129). Twenty-three of the 54 cases (42.6%) were diagnosed at a health facility, suggesting presence of symptoms, while 31 (57.4%) were identified incidentally through random testing campaigns/surveys or contact tracing. Only 1 person was hospitalized at the time of reinfection but was discharged the next day. No deaths were recorded. Viral genome sequencing confirmed 4 reinfections of 12 cases with available genetic evidence. Reinfection risk was estimated at 0.02% (95% confidence interval [CI], .01%-.02%), and reinfection incidence rate was 0.36 (95% CI, .28-.47) per 10 000 person-weeks. CONCLUSIONS: SARS-CoV-2 reinfection can occur but is a rare phenomenon suggestive of protective immunity against reinfection that lasts for at least a few months post primary infection.


Assuntos
COVID-19 , SARS-CoV-2 , Busca de Comunicante , Humanos , Incidência , Reinfecção
4.
Emerg Infect Dis ; 27(5): 1343-1352, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900174

RESUMO

We investigated what proportion of the population acquired severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whether the herd immunity threshold has been reached in 10 communities in Qatar. The study included 4,970 participants during June 21-September 9, 2020. Antibodies against SARS-CoV-2 were detected by using an electrochemiluminescence immunoassay. Seropositivity ranged from 54.9% (95% CI 50.2%-59.4%) to 83.8% (95% CI 79.1%-87.7%) across communities and showed a pooled mean of 66.1% (95% CI 61.5%-70.6%). A range of other epidemiologic measures indicated that active infection is rare, with limited if any sustainable infection transmission for clusters to occur. Only 5 infections were ever severe and 1 was critical in these young communities; infection severity rate of 0.2% (95% CI 0.1%-0.4%). Specific communities in Qatar have or nearly reached herd immunity for SARS-CoV-2 infection: 65%-70% of the population has been infected.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunidade Coletiva , Catar/epidemiologia
5.
PLoS Med ; 18(12): e1003879, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914711

RESUMO

BACKGROUND: The epidemiology of the SARS-CoV-2 B.1.1.7 (or Alpha) variant is insufficiently understood. This study's objective was to describe the introduction and expansion of this variant in Qatar and to estimate the efficacy of natural infection against reinfection with this variant. METHODS AND FINDINGS: Reinfections with the B.1.1.7 variant and variants of unknown status were investigated in a national cohort of 158,608 individuals with prior PCR-confirmed infections and a national cohort of 42,848 antibody-positive individuals. Infections with B.1.1.7 and variants of unknown status were also investigated in a national comparator cohort of 132,701 antibody-negative individuals. B.1.1.7 was first identified in Qatar on 25 December 2020. Sudden, large B.1.1.7 epidemic expansion was observed starting on 18 January 2021, triggering the onset of epidemic's second wave, 7 months after the first wave. B.1.1.7 was about 60% more infectious than the original (wild-type) circulating variants. Among persons with a prior PCR-confirmed infection, the efficacy of natural infection against reinfection was estimated to be 97.5% (95% CI: 95.7% to 98.6%) for B.1.1.7 and 92.2% (95% CI: 90.6% to 93.5%) for variants of unknown status. Among antibody-positive persons, the efficacy of natural infection against reinfection was estimated to be 97.0% (95% CI: 92.5% to 98.7%) for B.1.1.7 and 94.2% (95% CI: 91.8% to 96.0%) for variants of unknown status. A main limitation of this study is assessment of reinfections based on documented PCR-confirmed reinfections, but other reinfections could have occurred and gone undocumented. CONCLUSIONS: In this study, we observed that introduction of B.1.1.7 into a naïve population can create a major epidemic wave, but natural immunity in those previously infected was strongly associated with limited incidence of reinfection by B.1.1.7 or other variants.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Reinfecção/epidemiologia , Reinfecção/virologia , SARS-CoV-2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Número Básico de Reprodução , Criança , Feminino , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Reação em Cadeia da Polimerase , Catar/epidemiologia , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
6.
JAMA ; 326(19): 1930-1939, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34724027

RESUMO

Importance: The effect of prior SARS-CoV-2 infection on vaccine protection remains poorly understood. Objective: To assess protection from SARS-CoV-2 breakthrough infection after mRNA vaccination among persons with vs without prior SARS-CoV-2 infection. Design, Setting, and Participants: Matched-cohort studies in Qatar for the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines. A total of 1 531 736 individuals vaccinated with either vaccine between December 21, 2020, and September 19, 2021, were followed up beginning 14 days after receiving the second dose until September 19, 2021. Exposures: Prior SARS-CoV-2 infection and COVID-19 vaccination. Main Outcomes and Measures: Incident SARS-CoV-2 infection, defined as a polymerase chain reaction (PCR)-positive nasopharyngeal swab regardless of reason for PCR testing or presence of symptoms. Cumulative incidence was calculated using the Kaplan-Meier estimator method. Results: The BNT162b2-vaccinated cohort comprised 99 226 individuals with and 290 432 matched individuals without prior PCR-confirmed infection (median age, 37 years; 68% male). The mRNA-1273-vaccinated cohort comprised 58 096 individuals with and 169 514 matched individuals without prior PCR-confirmed infection (median age, 36 years; 73% male). Among BNT162b2-vaccinated persons, 159 reinfections occurred in those with and 2509 in those without prior infection 14 days or more after dose 2. Among mRNA-1273-vaccinated persons, 43 reinfections occurred in those with and 368 infections in those without prior infection. Cumulative infection incidence among BNT162b2-vaccinated individuals was an estimated 0.15% (95% CI, 0.12%-0.18%) in those with and 0.83% (95% CI, 0.79%-0.87%) in those without prior infection at 120 days of follow-up (adjusted hazard ratio for breakthrough infection with prior infection, 0.18 [95% CI, 0.15-0.21]; P < .001). Cumulative infection incidence among mRNA-1273-vaccinated individuals was an estimated 0.11% (95% CI, 0.08%-0.15%) in those with and 0.35% (95% CI, 0.32%-0.40%) in those without prior infection at 120 days of follow-up (adjusted hazard ratio, 0.35 [95% CI, 0.25-0.48]; P < .001). Vaccinated individuals with prior infection 6 months or more before dose 1 had statistically significantly lower risk for breakthrough infection than those vaccinated less than 6 months before dose 1 (adjusted hazard ratio, 0.62 [95% CI, 0.42-0.92]; P = .02 for BNT162b2 and 0.40 [95% CI, 0.18-0.91]; P = .03 for mRNA-1273 vaccination). Conclusions and Relevance: Prior SARS-CoV-2 infection was associated with a statistically significantly lower risk for breakthrough infection among individuals receiving the BNT162b2 or mRNA-1273 vaccines in Qatar between December 21, 2020, and September 19, 2021. The observational study design precludes direct comparisons of infection risk between the 2 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19/complicações , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Idoso , Vacina BNT162 , COVID-19/diagnóstico , COVID-19/prevenção & controle , Teste de Ácido Nucleico para COVID-19 , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Catar
7.
Front Med (Lausanne) ; 11: 1363045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529118

RESUMO

Introduction: Reinfections are increasingly becoming a feature in the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, accurately defining reinfection poses methodological challenges. Conventionally, reinfection is defined as a positive test occurring at least 90 days after a previous infection diagnosis. Yet, this extended time window may lead to an underestimation of reinfection occurrences. This study investigated the prospect of adopting an alternative, shorter time window for defining reinfection. Methods: A longitudinal study was conducted to assess the incidence of reinfections in the total population of Qatar, from February 28, 2020 to November 20, 2023. The assessment considered a range of time windows for defining reinfection, spanning from 1 day to 180 days. Subgroup analyses comparing first versus repeat reinfections and a sensitivity analysis, focusing exclusively on individuals who underwent frequent testing, were performed. Results: The relationship between the number of reinfections in the population and the duration of the time window used to define reinfection revealed two distinct dynamical domains. Within the initial 15 days post-infection diagnosis, almost all positive tests for SARS-CoV-2 were attributed to the original infection. However, surpassing the 30-day post-infection threshold, nearly all positive tests were attributed to reinfections. A 40-day time window emerged as a sufficiently conservative definition for reinfection. By setting the time window at 40 days, the estimated number of reinfections in the population increased from 84,565 to 88,384, compared to the 90-day time window. The maximum observed reinfections were 6 and 4 for the 40-day and 90-day time windows, respectively. The 40-day time window was appropriate for defining reinfection, irrespective of whether it was the first, second, third, or fourth occurrence. The sensitivity analysis, confined to high testers exclusively, replicated similar patterns and results. Discussion: A 40-day time window is optimal for defining reinfection, providing an informed alternative to the conventional 90-day time window. Reinfections are prevalent, with some individuals experiencing multiple instances since the onset of the pandemic.

8.
Vaccine ; 42(14): 3307-3320, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38616439

RESUMO

BACKGROUND: Vaccines were developed and deployed to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to characterize patterns in the protection provided by the BNT162b2 and mRNA-1273 mRNA vaccines against a spectrum of SARS-CoV-2 infection symptoms and severities. METHODS: A national, matched, test-negative, case-control study was conducted in Qatar between January 1 and December 18, 2021, utilizing a sample of 238,896 PCR-positive tests and 6,533,739 PCR-negative tests. Vaccine effectiveness was estimated against asymptomatic, symptomatic, severe coronavirus disease 2019 (COVID-19), critical COVID-19, and fatal COVID-19 infections. Data sources included Qatar's national databases for COVID-19 laboratory testing, vaccination, hospitalization, and death. RESULTS: Effectiveness of two-dose BNT162b2 vaccination was 75.6% (95% CI: 73.6-77.5) against asymptomatic infection and 76.5% (95% CI: 75.1-77.9) against symptomatic infection. Effectiveness against each of severe, critical, and fatal COVID-19 infections surpassed 90%. Immediately after the second dose, all categories-namely, asymptomatic, symptomatic, severe, critical, and fatal COVID-19-exhibited similarly high effectiveness. However, from 181 to 270 days post-second dose, effectiveness against asymptomatic and symptomatic infections declined to below 40%, while effectiveness against each of severe, critical, and fatal COVID-19 infections remained consistently high. However, estimates against fatal COVID-19 often had wide 95% confidence intervals. Analogous patterns were observed in three-dose BNT162b2 vaccination and two- and three-dose mRNA-1273 vaccination. Sensitivity analyses confirmed the results. CONCLUSION: A gradient in vaccine effectiveness exists and is linked to the symptoms and severity of infection, providing higher protection against more symptomatic and severe cases. This gradient intensifies over time as vaccine immunity wanes after the last vaccine dose. These patterns appear consistent irrespective of the vaccine type or whether the vaccination involves the primary series or a booster.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Eficácia de Vacinas , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Catar/epidemiologia , SARS-CoV-2/imunologia , Masculino , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Adulto , Estudos de Casos e Controles , Adulto Jovem , Adolescente , Idoso , Índice de Gravidade de Doença , Vacinação/métodos
9.
J Infect Public Health ; 16(2): 250-256, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603377

RESUMO

BACKGROUND: Some studies have reported that influenza vaccination is associated with lower risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and/or coronavirus disease 2019 (COVID-19) morbidity and mortality. This study aims to estimate effectiveness of influenza vaccination, using Abbott's quadrivalent Influvac Tetra vaccine, against SARS-CoV-2 infection and against severe COVID-19. METHODS: This matched, test-negative, case-control study was implemented on a population of 30,774 healthcare workers (HCWs) in Qatar during the 2020 annual influenza vaccination campaign, September 17, 2020-December 31, 2020, before introduction of COVID-19 vaccination. RESULTS: Of 30,774 HCWs, 576 with PCR-positive tests and 10,033 with exclusively PCR-negative tests were eligible for inclusion in the study. Matching by sex, age, nationality, reason for PCR testing, and PCR test date yielded 518 cases matched to 2058 controls. Median duration between influenza vaccination and the PCR test was 43 days (IQR, 29-62). Estimated effectiveness of influenza vaccination against SARS-CoV-2 infection> 14 days after receiving the vaccine was 29.7% (95% CI: 5.5-47.7%). Estimated effectiveness of influenza vaccination against severe, critical, or fatal COVID-19 was 88.9% (95% CI: 4.1-98.7%). Sensitivity analyses confirmed the main analysis results. CONCLUSIONS: Recent influenza vaccination is associated with a significant reduction in the risk of SARS-CoV-2 infection and COVID-19 severity.


Assuntos
COVID-19 , Influenza Humana , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Catar/epidemiologia , Vacinas contra COVID-19 , Estudos de Casos e Controles , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vacinação , Pessoal de Saúde
10.
Int J Infect Dis ; 132: 4-8, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37061212

RESUMO

OBJECTIVES: Accurate determination of the immediate causes of death in patients with COVID-19 is important for optimal care and mitigation strategies. METHODS: All deaths in Qatar between March 01, 2020, and August 31, 2022, flagged for likely relationship to COVID-19 were reviewed by two independent, trained reviewers using a standardized methodology to determine the immediate and contributory causes of death. RESULTS: Among 749 flagged deaths, the most common admitting diagnoses were respiratory tract infection (91%) and major adverse cardiac event (MACE, 2.3%). The most common immediate causes of death were COVID-19 pneumonia (66.2%), MACE (7.1%), hospital-associated pneumonia (HAP, 6.8%), bacteremia (6.3%), disseminated fungal infection (DFI, 5.2%), and thromboembolism (4.5%). After COVID-19 pneumonia, MACE was the predominant cause of death in the first 2 weeks but declined thereafter. No death occurred due to bacteremia, HAP, or DFI in the first week after hospitalization, but became increasingly common with increased length of stay in the hospital accounting for 9%, 12%, and 10% of all deaths after 4 weeks in the hospital, respectively. CONCLUSION: Nearly one-third of patients with COVID-19 infection die of non-COVID-19 causes, some of which are preventable. Mitigation strategies should be instituted to reduce the risk of such deaths.


Assuntos
COVID-19 , Humanos , Causas de Morte , SARS-CoV-2 , Hospitalização , Hospitais
11.
EClinicalMedicine ; 62: 102102, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533414

RESUMO

Background: Waning of natural infection protection and vaccine protection highlight the need to evaluate changes in population immunity over time. Population immunity of previous SARS-CoV-2 infection or of COVID-19 vaccination are defined, respectively, as the overall protection against reinfection or against breakthrough infection at a given point in time in a given population. Methods: We estimated these population immunities in Qatar's population between July 1, 2020 and November 30, 2022, to discern generic features of the epidemiology of SARS-CoV-2. Effectiveness of previous infection, mRNA primary-series vaccination, and mRNA booster (third-dose) vaccination in preventing infection were estimated, month by month, using matched, test-negative, case-control studies. Findings: Previous-infection effectiveness against reinfection was strong before emergence of Omicron, but declined with time after a wave and rebounded after a new wave. Effectiveness dropped after Omicron emergence from 88.3% (95% CI: 84.8-91.0%) in November 2021 to 51.0% (95% CI: 48.3-53.6%) in December 2021. Primary-series effectiveness against infection was 84.0% (95% CI: 83.0-85.0%) in April 2021, soon after introduction of vaccination, before waning gradually to 52.7% (95% CI: 46.5-58.2%) by November 2021. Effectiveness declined linearly by ∼1 percentage point every 5 days. After Omicron emergence, effectiveness dropped from 52.7% (95% CI: 46.5-58.2%) in November 2021 to negligible levels in December 2021. Booster effectiveness dropped after Omicron emergence from 83.0% (95% CI: 65.6-91.6%) in November 2021 to 32.9% (95% CI: 26.7-38.5%) in December 2021, and continued to decline thereafter. Effectiveness of previous infection and vaccination against severe, critical, or fatal COVID-19 were generally >80% throughout the study duration. Interpretation: High population immunity against infection may not be sustained beyond a year, but population immunity against severe COVID-19 is durable with slow waning even after Omicron emergence. Funding: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.

12.
EBioMedicine ; 95: 104734, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37515986

RESUMO

BACKGROUND: Protection against SARS-CoV-2 symptomatic infection and severe COVID-19 of previous infection, mRNA two-dose vaccination, mRNA three-dose vaccination, and hybrid immunity of previous infection and vaccination were investigated in Qatar for the Alpha, Beta, and Delta variants. METHODS: Six national, matched, test-negative, case-control studies were conducted between January 18 and December 18, 2021 on a sample of 239,120 PCR-positive tests and 6,103,365 PCR-negative tests. FINDINGS: Effectiveness of previous infection against Alpha, Beta, and Delta reinfection was 89.5% (95% CI: 85.5-92.3%), 87.9% (95% CI: 85.4-89.9%), and 90.0% (95% CI: 86.7-92.5%), respectively. Effectiveness of two-dose BNT162b2 vaccination against Alpha, Beta, and Delta infection was 90.5% (95% CI, 83.9-94.4%), 80.5% (95% CI: 79.0-82.0%), and 58.1% (95% CI: 54.6-61.3%), respectively. Effectiveness of three-dose BNT162b2 vaccination against Delta infection was 91.7% (95% CI: 87.1-94.7%). Effectiveness of hybrid immunity of previous infection and two-dose BNT162b2 vaccination was 97.4% (95% CI: 95.4-98.5%) against Beta infection and 94.5% (95% CI: 92.8-95.8%) against Delta infection. Effectiveness of previous infection and three-dose BNT162b2 vaccination was 98.1% (95% CI: 85.7-99.7%) against Delta infection. All five forms of immunity had >90% protection against severe, critical, or fatal COVID-19 regardless of variant. Similar effectiveness estimates were observed for mRNA-1273. A mathematical model accurately predicted hybrid immunity protection by assuming that the individual effects of previous infection and vaccination acted independently. INTERPRETATION: Hybrid immunity, offering the strongest protection, was mathematically predicted by assuming that the immunities obtained from previous infection and vaccination act independently, without synergy or redundancy. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.


Assuntos
COVID-19 , Hepatite D , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , RNA Mensageiro , Vacinação , Imunidade Adaptativa
13.
Int J Infect Dis ; 136: 81-90, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717648

RESUMO

OBJECTIVES: We assessed short-, medium-, and long-term all-cause mortality risks after a primary SARS-CoV-2 infection. METHODS: A national, matched, retrospective cohort study was conducted in Qatar to assess risk of all-cause mortality in the national SARS-CoV-2 primary infection cohort compared with the national infection-naïve cohort. Associations were estimated using Cox proportional-hazards regression models. Analyses were stratified by vaccination status and clinical vulnerability status. RESULTS: Among unvaccinated persons, within 90 days after primary infection, the adjusted hazard ratio (aHR) comparing mortality incidence in the primary-infection cohort with the infection-naïve cohort was 1.19 (95% confidence interval 1.02-1.39). aHR was 1.34 (1.11-1.63) in persons more clinically vulnerable to severe COVID-19 and 0.94 (0.72-1.24) in those less clinically vulnerable. Beyond 90 days after primary infection, aHR was 0.50 (0.37-0.68); aHR was 0.41 (0.28-0.58) at 3-7 months and 0.76 (0.46-1.26) at ≥8 months. The aHR was 0.37 (0.25-0.54) in more clinically vulnerable persons and 0.77 (0.48-1.24) in less clinically vulnerable persons. Among vaccinated persons, mortality incidence was comparable in the primary-infection versus infection-naïve cohorts, regardless of clinical vulnerability status. CONCLUSIONS: COVID-19 mortality was primarily driven by an accelerated onset of death among individuals who were already vulnerable to all-cause mortality, but vaccination prevented these accelerated deaths.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Catar/epidemiologia , Estudos de Coortes , Estudos Retrospectivos
14.
Lancet Infect Dis ; 23(7): 816-827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36913963

RESUMO

BACKGROUND: Long-term effectiveness of COVID-19 mRNA boosters in populations with different previous infection histories and clinical vulnerability profiles is inadequately understood. We aimed to investigate the effectiveness of a booster (third dose) vaccination against SARS-CoV-2 infection and against severe, critical, or fatal COVID-19, relative to that of primary-series (two-dose) vaccination over a follow-up duration of 1 year. METHODS: This observational, matched, retrospective, cohort study was done on the population of Qatar in people with different immune histories and different clinical vulnerability to infection. The source of data are Qatar's national databases for COVID-19 laboratory testing, vaccination, hospitalisation, and death. Associations were estimated using inverse-probability-weighted Cox proportional-hazards regression models. The primary outcome of the study is the effectiveness of COVID-19 mRNA boosters against infection and against severe COVID-19. FINDINGS: Data were obtained for 2 228 686 people who had received at least two vaccine doses starting from Jan 5, 2021, of whom 658 947 (29·6%) went on to receive a third dose before data cutoff on Oct 12, 2022. There were 20 528 incident infections in the three-dose cohort and 30 771 infections in the two-dose cohort. Booster effectiveness relative to primary series was 26·2% (95% CI 23·6-28·6) against infection and 75·1% (40·2-89·6) against severe, critical, or fatal COVID-19, during 1-year follow-up after the booster. Among people clinically vulnerable to severe COVID-19, effectiveness was 34·2% (27·0-40·6) against infection and 76·6% (34·5-91·7) against severe, critical, or fatal COVID-19. Effectiveness against infection was highest at 61·4% (60·2-62·6) in the first month after the booster but waned thereafter and was modest at only 15·5% (8·3-22·2) by the sixth month. In the seventh month and thereafter, coincident with BA.4/BA.5 and BA.2·75* subvariant incidence, effectiveness was progressively negative albeit with wide CIs. Similar patterns of protection were observed irrespective of previous infection status, clinical vulnerability, or type of vaccine (BNT162b2 vs mRNA-1273). INTERPRETATION: Protection against omicron infection waned after the booster, and eventually suggested a possibility for negative immune imprinting. However, boosters substantially reduced infection and severe COVID-19, particularly among individuals who were clinically vulnerable, affirming the public health value of booster vaccination. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core (both at Weill Cornell Medicine-Qatar), Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, and Qatar University Biomedical Research Center.


Assuntos
Pesquisa Biomédica , COVID-19 , Humanos , Estudos Retrospectivos , Estudos de Coortes , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2/genética
15.
Influenza Other Respir Viruses ; 17(11): e13224, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38019700

RESUMO

BACKGROUND: We investigated the contribution of age, coexisting medical conditions, sex, and vaccination to incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and of severe, critical, or fatal COVID-19 in older adults since pandemic onset. METHODS: A national retrospective cohort study was conducted in the population of Qatar aged ≥50 years between February 5, 2020 and June 15, 2023. Adjusted hazard ratios (AHRs) for infection and for severe coronavirus disease 2019 (COVID-19) outcomes were estimated through Cox regression models. RESULTS: Cumulative incidence was 25.01% (95% confidence interval [CI]: 24.86-25.15%) for infection and 1.59% (95% CI: 1.55-1.64%) for severe, critical, or fatal COVID-19 after a follow-up duration of 40.9 months. Risk of infection varied minimally by age and sex but increased significantly with coexisting conditions. Risk of infection was reduced with primary-series vaccination (AHR: 0.91, 95% CI: 0.90-0.93) and further with first booster vaccination (AHR: 0.75, 95% CI: 0.74-0.77). Risk of severe, critical, or fatal COVID-19 increased exponentially with age and linearly with coexisting conditions. AHRs for severe, critical, or fatal COVID-19 were 0.86 (95% CI: 0.7-0.97) for one dose, 0.15 (95% CI: 0.13-0.17) for primary-series vaccination, and 0.11 (95% CI: 0.08-0.14) for first booster vaccination. Sensitivity analysis restricted to only Qataris yielded similar results. CONCLUSION: Incidence of severe COVID-19 in older adults followed a dynamic pattern shaped by infection incidence, variant severity, and population immunity. Age, sex, and coexisting conditions were strong determinants of infection severity. Vaccine protection against severe outcomes showed a dose-response relationship, highlighting the importance of booster vaccination for older adults.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Estudos de Coortes , Estudos Retrospectivos , Vacinação , Comorbidade
16.
Sci Adv ; 9(40): eadh0761, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792951

RESUMO

Laboratory evidence suggests a possibility of immune imprinting for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We investigated the differences in the incidence of SARS-CoV-2 reinfection in a cohort of persons who had a primary Omicron infection, but different vaccination histories using matched, national, retrospective, cohort studies. Adjusted hazard ratio for reinfection incidence, factoring adjustment for differences in testing rate, was 0.43 [95% confidence interval (CI): 0.39 to 0.49] comparing history of two-dose vaccination to no vaccination, 1.47 (95% CI: 1.23 to 1.76) comparing history of three-dose vaccination to two-dose vaccination, and 0.57 (95% CI: 0.48 to 0.68) comparing history of three-dose vaccination to no vaccination. Divergence in cumulative incidence curves increased markedly when the incidence was dominated by BA.4/BA.5 and BA.2.75* Omicron subvariants. The history of primary-series vaccination enhanced immune protection against Omicron reinfection, but history of booster vaccination compromised protection against Omicron reinfection. These findings do not undermine the public health utility of booster vaccination.


Assuntos
COVID-19 , Reinfecção , Humanos , Reinfecção/prevenção & controle , Estudos Retrospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação
17.
PLoS One ; 17(7): e0271324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35853026

RESUMO

We developed a Coronavirus Disease 2019 (COVID-19) risk score to guide targeted RT-PCR testing in Qatar. The Qatar national COVID-19 testing database, encompassing a total of 2,688,232 RT-PCR tests conducted between February 5, 2020-January 27, 2021, was analyzed. Logistic regression analyses were implemented to derive the COVID-19 risk score, as a tool to identify those at highest risk of having the infection. Score cut-off was determined using the ROC curve based on maximum sum of sensitivity and specificity. The score's performance diagnostics were assessed. Logistic regression analysis identified age, sex, and nationality as significant predictors of infection and were included in the risk score. The ROC curve was generated and the area under the curve was estimated at 0.63 (95% CI: 0.63-0.63). The score had a sensitivity of 59.4% (95% CI: 59.1%-59.7%), specificity of 61.1% (95% CI: 61.1%-61.2%), a positive predictive value of 10.9% (95% CI: 10.8%-10.9%), and a negative predictive value of 94.9% (94.9%-95.0%). The concept and utility of a COVID-19 risk score were demonstrated in Qatar. Such a public health tool can have considerable utility in optimizing testing and suppressing infection transmission, while maximizing efficiency and use of available resources.


Assuntos
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Humanos , Saúde Pública , Catar/epidemiologia , Curva ROC , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2/genética , Sensibilidade e Especificidade
18.
Nat Commun ; 13(1): 3082, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654888

RESUMO

SARS-CoV-2 Omicron BA.1 and BA.2 subvariants are genetically divergent. We conducted a matched, test-negative, case-control study to estimate duration of protection of the second and third/booster doses of mRNA COVID-19 vaccines against BA.1 and BA.2 infections in Qatar. BNT162b2 effectiveness was highest at 46.6% (95% CI: 33.4-57.2%) against symptomatic BA.1 and at 51.7% (95% CI: 43.2-58.9%) against symptomatic BA.2 infections in the first three months after the second dose, but declined to ~10% or below thereafter. Effectiveness rebounded to 59.9% (95% CI: 51.2-67.0%) and 43.7% (95% CI: 36.5-50.0%), respectively, in the first month after the booster dose, before declining again. Effectiveness against COVID-19 hospitalization and death was 70-80% after the second dose and >90% after the booster dose. mRNA-1273 vaccine protection showed similar patterns. mRNA vaccines provide comparable, moderate, and short-lived protection against symptomatic BA.1 and BA.2 Omicron infections, but strong and durable protection against COVID-19 hospitalization and death.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Casos e Controles , Humanos , Catar/epidemiologia , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
19.
J Glob Health ; 12: 05004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136602

RESUMO

BACKGROUND: The effective reproduction number, Rt , is a tool to track and understand pandemic dynamics. This investigation of Rt estimations was conducted to guide the national COVID-19 response in Qatar, from the onset of the pandemic until August 18, 2021. METHODS: Real-time "empirical" Rt Empirical was estimated using five methods, including the Robert Koch Institute, Cislaghi, Systrom-Bettencourt and Ribeiro, Wallinga and Teunis, and Cori et al. methods. Rt was also estimated using a transmission dynamics model (Rt Model-based ). Uncertainty and sensitivity analyses were conducted. Correlations between different Rt estimates were assessed by calculating correlation coefficients, and agreements between these estimates were assessed through Bland-Altman plots. RESULTS: Rt Empirical captured the evolution of the pandemic through three waves, public health response landmarks, effects of major social events, transient fluctuations coinciding with significant clusters of infection, and introduction and expansion of the Alpha (B.1.1.7) variant. The various estimation methods produced consistent and overall comparable Rt Empirical estimates with generally large correlation coefficients. The Wallinga and Teunis method was the fastest at detecting changes in pandemic dynamics. Rt Empirical estimates were consistent whether using time series of symptomatic PCR-confirmed cases, all PCR-confirmed cases, acute-care hospital admissions, or ICU-care hospital admissions, to proxy trends in true infection incidence. Rt Model-based correlated strongly with Rt Empirical and provided an average Rt Empirical . CONCLUSIONS: Rt estimations were robust and generated consistent results regardless of the data source or the method of estimation. Findings affirmed an influential role for Rt estimations in guiding national responses to the COVID-19 pandemic, even in resource-limited settings.


Assuntos
COVID-19 , SARS-CoV-2 , Número Básico de Reprodução , Humanos , Pandemias , Catar/epidemiologia
20.
PLoS One ; 17(1): e0262897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100295

RESUMO

This study investigated the performance of a rapid point-of-care antibody test, the BioMedomics COVID-19 IgM/IgG Rapid Test, in comparison with a high-quality, validated, laboratory-based platform, the Roche Elecsys Anti-SARS-CoV-2 assay. Serological testing was conducted on 709 individuals. Concordance metrics were estimated. Logistic regression was used to assess associations with seropositivity. SARS-CoV-2 seroprevalence was 63.5% (450/709; 95% CI 59.8%-67.0%) using the BioMedomics assay and 71.9% (510/709; 95% CI 68.5%-75.2%) using the Elecsys assay. There were 60 discordant results between the two assays, all of which were seropositive in the Elecsys assay, but seronegative in the BioMedomics assay. Overall, positive, and negative percent agreements between the two assays were 91.5% (95% CI 89.2%-93.5%), 88.2% (95% CI 85.1%-90.9%), and 100% (95% CI 98.2%-100%), respectively, with a Cohen's kappa of 0.81 (95% CI 0.78-0.84). Excluding specimens with lower (Elecsys) antibody titers, the agreement improved with overall, positive, and negative percent concordance of 94.4% (95% CI 92.3%-96.1%), 91.8% (95% CI 88.8%-94.3%), and 100% (95% CI 98.2%-100%), respectively, and a Cohen's kappa of 0.88 (95% CI 0.85-0.90). Logistic regression confirmed better agreement with higher antibody titers. The BioMedomics COVID-19 IgM/IgG Rapid Test demonstrated good performance in measuring detectable antibodies against SARS-CoV-2, supporting the utility of such rapid point-of-care serological testing to guide the public health responses and vaccine prioritization.


Assuntos
Teste Sorológico para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Adulto , COVID-19/sangue , COVID-19/genética , COVID-19/virologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Testes Imediatos , Catar , SARS-CoV-2/patogenicidade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA