Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Anim Cogn ; 27(1): 26, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530499

RESUMO

Little is known about the behavioral and cognitive traits that best predict invasion success. Evidence is mounting that cognitive performance correlates with survival and fecundity, two pivotal factors for the successful establishment of invasive populations. We assessed the quantity discrimination ability of the globally invasive red-eared slider (Trachemys scripta elegans). We further compared it to that of the native stripe-necked turtle (Mauremys sinensis), which has been previously evaluated for its superior quantity discrimination ability. Specifically, our experimental designs aimed to quantify the learning ability as numerosity pairs increased in difficulty (termed fixed numerosity tests), and the immediate response when turtles were presented with varied challenges concurrently in the same tests (termed mixed numerosity tests). Our findings reaffirm the remarkable ability of freshwater turtles to discern numerical differences as close as 9 vs 10 (ratio = 0.9), which was comparable to the stripe-necked turtle's performance. However, the red-eared slider exhibited a moderate decrease in performance in high ratio tests, indicating a potentially enhanced cognitive capacity to adapt to novel challenges. Our experimental design is repeatable and is adaptable to a range of freshwater turtles. These findings emphasize the potential importance of cognitive research to the underlying mechanisms of successful species invasions.


Assuntos
Tartarugas , Animais , Tartarugas/fisiologia , Projetos de Pesquisa , Adaptação Fisiológica
2.
J Anim Ecol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706400

RESUMO

1. Individual niche specialization is widespread in natural populations and has key implications for higher levels of biological organization. This phenomenon, however, has been primarily quantified in resource niche axes, overlooking individual variation in environmental associations (i.e. abiotic conditions organisms experience). 2. Here, we explore what we can learn from a multidimensional perspective of individual niche specialization that integrates resource use and environmental associations into a common framework. 3. By combining predictions from theory and simple simulations, we illustrate how (i) multidimensional intraspecific niche variation and (ii) the spatiotemporal context of interactions between conspecifics scale up to shape emergent patterns of the population niche. 4. Contemplating individual specialization as a multidimensional, unifying concept across biotic and abiotic niche axes is a fundamental step towards bringing this concept closer to the n-dimensional niche envisioned by Hutchinson.


1. A especialização individual de nicho é prevalente em populações naturais e tem implicações importantes para níveis de organização biológica superiores. Esse fenômeno, entretanto, tem sido principalmente quantificado em eixos do nicho que representam o uso de recursos, negligenciando a variação individual em associações ambientais (i.e. as condições abióticas que organismos experimentam). 2. Aqui, exploramos o que podemos aprender a partir de uma perspectiva multidimensional da especialização individual que integra o uso de recursos e associações ambientais em uma abordagem única. 3. Ao combinar predições da teoria e simulações simples, ilustramos como (i) a variação intraespecífica multidimensional de nicho e (ii) o contexto espaço­temporal de interações entre conspecíficos podem moldar padrões emergentes do nicho de populações. 4. Encarar a especialização individual como um conceito multidimensional e unificador em eixos do nicho bióticos e abióticos é um passo fundamental na direção de aproximar esse conceito do nicho n­dimensional idealizado por Hutchinson.

3.
J Anim Ecol ; 91(8): 1679-1692, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35633185

RESUMO

Niche variation at population level mediates niche packing (i.e. patterns of species' spread within the niche space) and species coexistence at community level. Competition and ecological opportunity (resource diversity) are two of the main mechanisms underlying niche variation. Dense niche packing could occur through increased niche partitioning or increased niche overlap. In this study, we used stable carbon and nitrogen isotope data of 635 individual rodents from four species across nine sites in the montane region of a subtropical island to test the effects of competition and ecological opportunity on population isotope niche size, inter-individual niche difference within population and interspecific niche overlap within community. We used the Bayesian Standard Ellipse Area (SEAB, the ellipse area enclosed by carbon and nitrogen isotope values of organisms on a bi-plot) to estimate population niche size and interspecific niche overlap. Inter-individual niche difference within population was quantified as isotopic divergence and isotopic uniqueness. We used rodent abundance (the number of unique individuals captured) to measure competition and plant isotope niche size (plant SEAB) to measure ecological opportunity. The rodents experienced competition as evidenced by a negative relationship between population change rate and conspecific abundance. Rodent population niche size increased with ecological opportunity but not competition. The inter-individual niche difference (isotopic uniqueness) increased with competition (interspecific competition only) but not ecological opportunity. At community level, interspecific niche overlap (herbivore-omnivore pair only) increased with competition (the combined abundance of the pair) but not ecological opportunity. This study demonstrated that isotope niche variation of the rodents could be hierarchically influenced by ecological opportunity and competition, with the former setting the limit of population niche size across communities and the latter shaping inter-individual niche difference and interspecific niche overlap within communities. Under strong intraspecific competition and limited ecological opportunity for niche expansion, individuals may choose to increase their isotopic uniqueness from conspecifics at the cost of overlapping with heterospecifics of different trophic roles within the community niche space as overall competition increases. Denser niche packing of these rodent communities might be achieved through increased niche overlap.


Assuntos
Individualidade , Roedores , Animais , Teorema de Bayes , Carbono , Ecossistema , Isótopos de Nitrogênio
4.
Front Zool ; 18(1): 49, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563231

RESUMO

BACKGROUND: Quantity discrimination, the ability to discriminate a magnitude of difference or discrete numerical information, plays a key role in animal behavior. While quantitative ability has been well documented in fishes, birds, mammals, and even in previously unstudied invertebrates and amphibians, it is still poorly understood in reptiles and has never been tested in an aquatic turtle despite the fact that evidence is accumulating that reptiles possess cognitive skills and learning ability. To help address this deficiency in reptiles, we investigated the quantitative ability of an Asian freshwater turtle, Mauremys sinensis, using red cubes on a white background in a trained quantity discrimination task. While spontaneous quantity discrimination methods are thought to be more ecologically relevant, training animals on a quantity discrimination task allows more comparability across taxa. RESULTS: We assessed the turtles' quantitative performance in a series of tests with increasing quantity ratios and numerosities. Surprisingly, the turtles were able to discriminate quantities of up to 9 versus 10 (ratio = 0.9), which shows a good quantitative ability that is comparable to some endotherms. Our results showed that the turtles' quantitative performance followed Weber's law, in which success rate decreased with increasing quantity ratio across a wide range of numerosities. Furthermore, the gradual improvement of their success rate across different experiments and phases suggested that the turtles possess learning ability. CONCLUSIONS: Reptile quantitative ability has long been ignored and therefore is likely under-estimated. More comparative research on numerical cognition across a diversity of species will greatly contribute to a clearer understanding of quantitative ability in animals and whether it has evolved convergently in diverse taxa.

5.
Front Zool ; 17: 27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973911

RESUMO

BACKGROUND: Understanding how wild species respond to novel situations with associated risk can provide valuable insights for inter-specific behavioral variation and associations with pace-of-life (POL). Rodents, a globally distributed and diverse taxonomic group, have been the subjects of countless studies emulating risky situations. Controlled laboratory experiments with a focus on wild-caught species provide the opportunity to test fine-scale behavioral responses to contexts of risk with ecological implications. For example, assessing the importance of predator cues eliciting antipredator responses, as well as whether wild rodents embody behavioral plasticity and repertoires, illustrated by habituation and variation in behavioral traits, respectively. RESULTS: In this comparative study, we examined multiple behavioral responses of four rodent species in eastern Taiwan (three native species Mus caroli, Apodemus agrarius, Rattus losea, and one invasive, Rattus exulans) exposed to an unfamiliar microenvironment and novel cue from an allopatric predator, the leopard cat (Prionailurus bengalensis). All wild-caught animals were subjected to two consecutive nights of experimental trials in a laboratory setting. Behavioral responses to a novel situation during the first trial differed between species; smaller species investing more time in non-defensive behaviors compared to the larger species. More specifically, the smaller species M. caroli and A. agrarius allocated more time to exploration and foraging, whereas the larger rat species R. exulans and R. losea spent more time motionless or concealing. During the second trial, the addition of leopard cat cues did not elicit antipredator behaviors, but rather, rodents were found to exhibit increased non-defensive behaviors, specifically foraging efforts. CONCLUSIONS: Our results suggest that these four species do largely follow a behavioral fast-slow continuum with the two smaller mice species demonstrating increased boldness in a novel context compared to the larger rat species. Also, the wild populations of rodents in eastern Taiwan may be naïve to leopard cats. Finally, the rodents in our study demonstrated habituation to the microenvironment, indicating they possess adaptive capacity.

6.
Proc Natl Acad Sci U S A ; 111(29): 10636-41, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24979776

RESUMO

To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history.


Assuntos
Columbidae/fisiologia , Extinção Biológica , Animais , Mapeamento Cromossômico , Abastecimento de Alimentos , Genoma/genética , Geografia , Cadeias de Markov , Densidade Demográfica , Dinâmica Populacional , Quercus/fisiologia , Estados Unidos
7.
Oecologia ; 180(1): 293-303, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26391382

RESUMO

Trophic cascades play a crucial role in ecosystem functioning. In this study, we tested the effects of avian predation on willows (Salix warburgii) and associated arthropods in an urban wetland. We excluded birds by netting around willow branches for 20 months from September-November 2010 to June 2012. We compared the leaf count, leaf area, leaf biomass, bud count, catkin (flower) count and herbivory from pairs of bird-exclusion and no-exclusion branches on 11 trees. Simultaneously, we compared herbivorous and predatory arthropod abundances associated with bird-exclusion and no-exclusion branches. Another nine trees were used as reference branches to assess whether the bird exclusion impacted other branches of the same trees (i.e., no-exclusion branches). Bird exclusion resulted in increased herbivory 1 year after the treatment, followed by a reduced leaf count, leaf area, leaf biomass, bud count and catkin count in the second year. The bird-exclusion branches exhibited greater spider abundance than the no-exclusion branches. However, herbivorous arthropod abundances were similar between the branch types. The reference branches had similar values in all plant traits and for all arthropod abundances to those of the no-exclusion branches. This study demonstrated the branch-level effects of trophic cascades on willows via the exclusion of birds and a resulting reduction in herbivory. However, whether and how the arthropods mediate such effects require further investigation. This study adds to the limited empirical data demonstrating the effects of trophic cascades on plant reproduction. Our findings highlight the importance of bird conservation in urban wetlands.


Assuntos
Artrópodes , Aves , Cadeia Alimentar , Herbivoria , Comportamento Predatório , Salix , Áreas Alagadas , Animais , Biomassa , Cidades , Folhas de Planta , Árvores
8.
J Anim Ecol ; 84(3): 829-839, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25582865

RESUMO

Niche evolution underpins the generation and maintenance of biological diversity, but niche conservatism, in which niches remain little changed over time in closely related taxa, and the role of ecology in niche evolution are continually debated. To test whether climate niches are conserved in two closely related passerines in East Asia - the vinous-throated (Paradoxornis webbianus) and ashy-throated (P. alphonsianus) parrotbills - we established their potential allopatric and sympatric regions using ecological niche models and compared differences in their climate niches using niche overlap indices in background tests and multivariate statistical analyses. We also used polymorphism data on 44 nuclear genes to infer their divergence demography. We found that these two parrotbills occupy different climate niches, in both their allopatric and potential sympatric regions. Because the potential sympatric region is the area predicted to be suitable for both parrotbills based on the ecological niche models, it can serve as a natural common garden. Therefore, their observed niche differences in this potential sympatry were not simply rendered by phenotypic plasticity and probably had a genetic basis. Our genetic analyses revealed that the two parrotbills are not evolutionarily independent for the most recent part of their divergence history. The two parrotbills diverged c. 856,000 years ago and have had substantial gene flow since a presumed secondary contact c. 290,000 years ago. This study provides an empirical case demonstrating that climate niches may not be homogenized in nascent species in spite of substantial, ongoing gene flow, which in turn suggests a role for ecology in promoting and maintaining diversification among incipient species.


Assuntos
Clima , Fluxo Gênico , Passeriformes/genética , Animais , Ecossistema , Feminino , Especiação Genética , Masculino , Dados de Sequência Molecular , Passeriformes/classificação , Filogenia
9.
Oecologia ; 177(3): 657-667, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25417000

RESUMO

Parasites can generate complex life history trade-offs in a host. In this study, we experimentally reduced the infection level of intestinal helminth parasites in the Taiwan field mouse (Apodemus semotus) to test (1) whether parasite richness and load are biased towards male or female mice (sex-biased parasitism) and (2) whether the effects of parasitism on the host's survival and reproduction are different between the sexes (sex-specific effects of parasitism). Our findings indicate that neither parasite richness (number of helminth taxa found in a fecal sample) nor parasite load (number of helminth eggs per gram of fecal material) was sexually biased in our A. semotus study population. These results are in agreement with those of previous studies on endoparasites in Apodemus spp., but are in contrast to those on ectoparasites in Apodemus spp. Parasite removal reduced the survival rate of reproducing females, possibly by allowing reproducing females to increase maternal investment in their current litters at the cost of their own future survival. Single-litter mothers with reduced parasitism had a higher body mass than the untreated single-litter mothers, suggesting an increased maternal investment. In addition, the reproductively more active A. semotus, particularly the females, carried higher parasite loads, suggesting a trade-off between reproduction and parasite defense. By demonstrating that parasites can affect life history trade-offs in A. semotus, our results highlight the importance of maintaining variation in life history traits under parasitism risks and illustrate the subtle demographic processes (e.g. reduced future survival among healthy reproducing females) that might be driven by parasitism.


Assuntos
Doenças dos Animais/parasitologia , Clima , Ecossistema , Helmintos , Infecções/parasitologia , Camundongos/parasitologia , Reprodução , Animais , Peso Corporal , Feminino , Masculino , Camundongos/fisiologia , Taiwan
10.
J Anim Ecol ; 83(2): 450-9, 2014 03.
Artigo em Inglês | MEDLINE | ID: mdl-24107232

RESUMO

The niche variation hypothesis (NVH) predicts that populations with wider niches are phenotypically more variable than populations with narrower niches, which is frequently used to explain diversifying processes such as ecological release. However, not all empirical evidence supports the NVH. Furthermore, a relationship between population phenotypic variation and niche width can be caused by sexual selection or environmental gradients, which should be carefully considered along with competition in explaining niche variation. In this study, we used eight populations of a generalist passerine species, Paradoxornis webbianus (vinous-throated parrotbill), to test the NVH. We assessed evidence of ecological sexual dimorphism and environmental gradients in bill morphology of P. webbianus. A total of 170 P. webbianus from eight sites ranging 24-2668 m in altitude were included in this study. We used two principal components to quantify bill morphology: one describes bill size and the other describes bill slenderness. We used stable carbon and nitrogen isotope values of bird feathers to quantify trophic positions, and we estimated population trophic niche width using Bayesian standardized ellipse area. Paradoxornis webbianus with larger and more slender bills fed at higher trophic levels and population trophic niche width tended to increase with bill-size variation, supporting the NVH. The males had larger bills and marginally higher nitrogen isotope values than the females, suggesting ecological sexual dimorphism. Despite a positive correlation between bill size and wing length indicating sexual selection for larger male size, only three of the eight populations showed both male-biased bill size and male-biased wing length. Sexual dimorphism explained 13%-64% of bill-size variation across sites, suggesting its role in niche variation could vary greatly among populations. The variation in bill slenderness in P. webbianus increased with elevation. However, neither bill-size variation nor trophic niche width changed with elevation. Therefore, environmental gradients that could be reflected in the elevation are not likely to drive the observed morphological and niche variation. This study provides an empirical case for the NVH and highlights the importance of investigating sexual dimorphism and environmental gradients in studies of niche dynamics.


Assuntos
Bico/anatomia & histologia , Ecossistema , Estado Nutricional , Aves Canoras/anatomia & histologia , Aves Canoras/fisiologia , Animais , Feminino , Masculino , Caracteres Sexuais , Taiwan
11.
Ecol Evol ; 12(8): e9188, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949538

RESUMO

Species with similar ecological characters often compete with each other; however, a species may also facilitate the survival or reproduction of another ecologically similar species, although such interaction is rarely documented in birds. Here, we reported a facilitative species interaction between Asian house martins (Delichon dasypus) and russet sparrows (Passer cinnamomeus), both passerines using closed nests, in a montane farming area of Taiwan. We found that Asian house martins constructed dome-shaped nests in human houses that provided additional nest sites for russet sparrows, secondary cavity nesters with greatly declining populations in Taiwan. Russet sparrows that used house martin nests had reproductive success comparable to those that used artificial nest boxes. However, Asian house martins avoided reclaiming sparrow-used nests, which reduced their available nest sites. Interestingly, our results imply that man-made structures may be used as a conservation tool to improve the breeding of the endangered russet sparrows via this facilitative interaction.

12.
Ecol Evol ; 11(12): 7378-7389, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188820

RESUMO

The niche variation hypothesis (NVH) predicts that populations with wider niches exhibit greater morphological variation through increased interindividual differences in both niche and morphology. In this study, we examined niche-trait relationships in three passerine species (Cyanoderma ruficeps, Sinosuthora webbiana, and Zosterops simplex). A total of 289 C. ruficeps from 7 sites, 259 S. webbiana from 8 sites, and 144 Z. simplex from 6 sites were sampled along an elevation gradient (0-2,700 m) in Taiwan from 2009 to 2017. We measured bill traits (length, width, and depth of bill) and body size traits (length of head, tarsus, and wing) of the birds, which were reduced to four principal components (bill PC1, bill PC2, body size PC1, and body size PC2). We collected feather tissues for stable carbon and nitrogen isotope analyses to quantify their isotope niche. We quantified interindividual differences in isotope space and trait space with four diversity metrics (divergence, dispersion, evenness, and uniqueness) and tested whether interindividual differences in isotope space and trait space are positively associated. We quantified population isotope niche width by Bayesian ellipse area and population morphological variation by variances of the PCs. The results showed that individual uniqueness in isotope niche and bill morphology (average closeness of individuals within the population isotope/trait space) were positively associated across three species. Furthermore, isotope niche width and bill PC1 (reflecting the size of bill) variation at population level were also positively associated across the three species, supporting the NVH. Of the three species, C. ruficeps and S. webbiana showed stronger support for the NVH than Z. simplex, possibly due to the latter having narrower elevational distribution and a more specialized, plant-based diet. The diversity metrics represented different aspects of interindividual differences in niche/trait space, and for the passerines, individual uniqueness appeared to play an important role in their niche-trait dynamics.

13.
Ecol Evol ; 11(21): 15249-15260, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765175

RESUMO

Ecogeographic rules that describe quantitative relationships between morphologies and climate might help us predict how morphometrics of animals was shaped by local temperature or humidity. Although the ecogeographic rules had been widely tested in animals of Europe and North America, they had not been fully validated for species in regions that are less studied. Here, we investigate the morphometric variation of a widely distributed East Asian passerine, the vinous-throated parrotbill (Sinosuthora webbiana), to test whether its morphological variation conforms to the prediction of Bergmann's rule, Allen's rules, and Gloger's rule. We at first described the climatic niche of S. webbiana from occurrence records (n = 7838) and specimen records (n = 290). The results of analysis of covariance (ANCOVA) suggested that the plumage coloration of these parrotbills was darker in wetter/warmer environments following Gloger's rule. However, their appendage size (culmen length, beak volume, tarsi length) was larger in colder environments, the opposite of the predictions of Allen's rule. Similarly, their body size (wing length) was larger in warmer environments, the opposite of the predictions of Bergmann's rule. Such disconformity to both Bergmann's rule and Allen's rule suggests that the evolution of morphological variations is likely governed by multiple selection forces rather than dominated by thermoregulation. Our results suggest that these ecogeographic rules should be validated prior to forecasting biological responses to climate change especially for species in less-studied regions.

14.
Zoological Lett ; 6: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31921441

RESUMO

Based on 20,000 records representing c. 11,000 individuals from an 8-year capture-mark-recapture (CMR) study, we tested and confirmed a new case of invariant clutch size (ICS) in a sexually dichromatic lacertid lizard, Takydromus viridipunctatus. In the grassland habitat of the early succession stage, females showed strictly low and invariant clutch size, multiple clutches in a breeding season, high reproductive potential, and annual breeding cycles that correspond to the emergence of male courtship coloration. The hatchlings mature quickly, and join the adult cohort for breeding within a few months, whereas adults show low survival rates and a short lifespan, such that most die within one year. Mortality increased in both sexes during the breeding season, especially in females, indicating an unequal cost of reproduction in survival. These life history characters may be explained by two non-exclusive hypotheses of ICS-arboreal hypothesis and predation hypothesis-within the ecological context of their habitat. Our study highlights a confirmed case of ICS, which adapts well to this r-selected grassland habitat that experiences seasonal fluctuation and frequent disturbance.

15.
Sci Rep ; 9(1): 8161, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160614

RESUMO

With rapid urbanization worldwide, anthropogenic impacts such as human settlements and invasive carnivores (dogs Canis familiaris, cats Felis catus) are altering spatial distributions and temporal activity patterns of native species. In this study, we focused on spatiotemporal responses of native mammals to anthropogenic impacts in a protected area surrounded by a large metropolis (i.e. Yangmingshan National Park inside Taipei-Keelung metropolis in northern Taiwan). We collected site use data of 11 mammal species (i.e. dogs, cats, nine native species) between 2012 and 2017 with a camera system comprising 121 camera sites. We quantified anthropogenic disturbances as distance to human settlements and activity levels of free-roaming dogs and cats. Species richness and occurrences of the native mammals increased with increasing distances to human settlements and decreasing activity level of dogs, with the latter having a stronger effect than the former. Diel activity overlap between native mammals and dogs was lower during April-July season, coinciding with the breeding season for several native mammals. In contrast, activity level of cats showed no relationships with species richness, occurrences or diel activities of the native mammals. This study demonstrated negative impacts of human settlements and free-roaming dogs on native mammal communities for protected areas in urban environments, and highlights dog activity as a major anthropogenic threat to wildlife.


Assuntos
Animais Selvagens/fisiologia , Comportamento Animal/fisiologia , Gatos/fisiologia , Cães/fisiologia , Animais , Humanos , Parques Recreativos , Taiwan , Urbanização , Gravação em Vídeo
16.
Sci Adv ; 5(4): eaar5478, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31032398

RESUMO

Phylogenetic analysis has shown that males' propensity to engage in aggressive encounters is associated with females having greater longevity. Here, we confirm the causal link between aggression and reduced longevity by looking at an egg-eating snake (Oligodon formosanus) in which females defend territories in the presence of sea turtle eggs. We monitored aggressiveness and survival at two sites: a control site with a stable supply of turtle eggs, and a second site where we collected data before and after a storm that eroded the beach on which turtles nested, thus leading to a loss of territoriality. We show that territoriality was the driver behind higher injury rates in females. Territorial females also had lower survival and decreased longevity compared with the nonterritorial males, but these differences disappeared when females were not territorial. Our study demonstrates how resource availability can influence the evolution of sex-specific patterns of survival across vertebrates.


Assuntos
Longevidade , Serpentes/fisiologia , Territorialidade , Animais , Peso Corporal , Feminino , Masculino , Filogenia , Fatores Sexuais , Comportamento Social , Aumento de Peso
17.
Zool Stud ; 57: e44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31966284

RESUMO

Chien-Lung Chen and Pei-Jen L. Shaner (2018) Resource events such as typhoon-triggered greenfall have consequences for multiple ecological mechanisms, ranging from population dynamics and trophic interactions to ecosystem processes. Arthropods are sensitive to environmental disturbances, and many taxa have been used as indicator species. In a field experiment, we tested the effects of greenfall on ground-dwelling arthropods (mostly litter-dwelling taxa) in a forest of Taiwan red pine (Pinus taiwanensis) in the summer of 2013. Of 20 field plots (5 × 5 m), half received P. taiwanensis greenfall while the other half served as unaltered controls. As predicted, some arthropod taxa responded more strongly than others to the greenfall addition. Among the examined arthropod taxa (Araneae, Coleoptera: Carabidae, Coleoptera: Staphylinidae, Hymenoptera: Formicidae, Collembola, Isopoda: Oniscidea), the predatory staphylid beetles (Staphylinidae) responded positively to greenfall addition while the larger-sized detritivore woodlice (Oniscidea) responded negatively. Contrary to our prediction of a positive response, the smaller-sized detritivore springtails (Collembola) were unaffected by the greenfall addition. At the beginning of this study, we observed short-term effects of a naturally- occurring typhoon, to which springtails and ants (Formicidae) responded negatively while staphylid beetles responded positively. Also contrary to our prediction, these taxon-specific responses did not suffice to alter the composition of arthropod communities. We concluded that the intra-annual effects of typhoons-specifically those associated with greenfall-are more likely to impact certain taxa, including staphylid beetles, woodlice, springtails and ants. At the taxonomic level examined here, these intra-annual effects on community composition are non-detectable. As typhoon frequency and intensity are likely to change with global warming, the study makes a timely contribution to our understanding of typhoon-induced ecological dynamics in subtropical plantation forests.

18.
Ecol Evol ; 8(8): 4162-4172, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721288

RESUMO

Food and parasitism can have complex effects on small mammal reproduction. In this study, we tested the effects of sex, food, and parasitism on reproductive performance of the Taiwan field mouse (Apodemus semotus). In a field experiment, we increased food availability for a portion of the mice in the population by providing sorghum seeds to a set of food stations. We reduced parasite intensity of randomly chosen mice through ivermectin treatment. We determined the number and quality of offspring for the mice using paternity analysis. We quantified seed consumption with stable carbon isotope values of mouse plasma and parasite intensity with fecal egg counts of intestinal nematodes and cestodes (FEC). In a laboratory experiment, we reduced parasite intensity of randomly chosen mice through ivermectin treatment. We quantified their immune functions by total white blood cell count, percent granulocyte count, and percent lymphocyte count through hematological analyses. We measured the FEC and energy intake of the mice. From the field experiment, the number of offspring in A. semotus increased with increasing seed consumption. Due to the trade-off between number and quality of offspring, the offspring quality decreased with increasing seed consumption for the females. The ivermectin treatment did not affect offspring number or quality. However, the FEC was positively correlated with number of offspring. In the laboratory experiment, the percent lymphocyte/granulocyte count changed with parasite intensity at low energy intake, which was relaxed at high energy intake. This study demonstrated positive effects of food availability and neutral effects of parasitism on A. semotus reproduction. However, the benefits of food availability for the females need to take into account the offspring number-quality trade-off, and at high infection intensity, parasitism might negatively affect offspring quality for the males. We suggest that food availability could mediate the relationships between parasite intensity and immune responses.

19.
Curr Biol ; 28(1): 70-76.e4, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29249659

RESUMO

The vertebrate extinction rate over the past century is approximately 22-100 times greater than background extinction rates [1], and large mammals are particularly at risk [2, 3]. Quaternary megafaunal extinctions have been attributed to climate change [4], overexploitation [5], or a combination of the two [6]. Rhinoceroses (Family: Rhinocerotidae) have a rich fossil history replete with iconic examples of climate-induced extinctions [7], but current pressures threaten to eliminate this group entirely. The Sumatran rhinoceros (Dicerorhinus sumatrensis) is among the most imperiled mammals on earth. The 2011 population was estimated at ≤216 wild individuals [8], and currently the species is extirpated, or nearly so, throughout the majority of its former range [8-12]. Understanding demographic history is important in placing current population status into a broader ecological and evolutionary context. Analysis of the Sumatran rhinoceros genome reveals extreme changes in effective population size throughout the Pleistocene. Population expansion during the early to middle Pleistocene was followed by decline. Ecological niche modeling indicated that changing climate most likely played a role in the decline of the Sumatran rhinoceros, as less suitable habitat on an emergent Sundaland corridor isolated Sumatran rhinoceros populations. By the end of the Pleistocene, the Sundaland corridor was submerged, and populations were fragmented and consequently reduced to low Holocene levels from which they would never recover. Past events denuded the Sumatran rhinoceros of genetic diversity through population decline, fragmentation, or some combination of the two and most likely made the species even more susceptible to later exploitation and habitat loss. VIDEO ABSTRACT.


Assuntos
Mudança Climática , Genoma , Perissodáctilos/genética , Animais , Ecossistema , Espécies em Perigo de Extinção , Indonésia , Modelos Biológicos , Densidade Demográfica
20.
Ecology ; 88(1): 87-95, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17489457

RESUMO

Dietary shifts are commonly exhibited by omnivorous consumers when foraging from variable food resources. One advantage of dietary shifts for a consumer is the ability to gain complementary resources from different foods. In addition, dietary shifts often affect food-web dynamics. Despite the importance of dietary shifts to organismal, community, and ecosystem ecology, empirical studies of the ecological mechanisms that control dietary shifts are limited in scope. In this study, we tested the effects of complementary resources on dietary shifts of an omnivorous mammal, the white-footed mouse Peromyscus leucopus, in the context of depletable food patches in the natural environment. We used two complementary resources: seeds that provide a higher energy gain per unit handling time and mealworms that provide a higher protein gain per unit handling time. Stable isotopes of carbon and nitrogen (delta13C, delta15N) in mouse plasma were used to quantify dietary shifts, and we determined giving-up density (GUD), the food density at which a forager leaves a food patch (for an optimal forager, it should correspond to the quitting harvest rate that balances net fitness gain with various costs of foraging). The results showed that GUD increased most significantly when a mixture of seeds and mealworms was added, compared to when only seeds or mealworms were added. This suggests that, given a similar level of food availability, a patch with a mixture of complementary foods is of higher quality than a patch with only one type of food. Moreover, GUD measured with seeds (GUDs) correlated positively with seed availability, and GUD measured with mealworms (GUDmw) correlated positively with mealworm availability, indicating that the marginal value of seeds or mealworms decreases with their relatively availability in the environment. As GUDs increased, P. leucopus shifted their diets toward higher trophic levels, and as GUDmw increased, P. leucopus shifted their diets toward lower trophic levels, suggesting dietary shifts driven by food complementarity. This study demonstrated that the combination of giving-up density and stable-isotope analysis holds great potential for testing ecological mechanisms underlying dietary shifts.


Assuntos
Dieta , Peromyscus/fisiologia , Animais , Isótopos de Carbono , Alimentos , Isótopos de Nitrogênio , Panicum , Sementes , Tenebrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA