Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Environ Manage ; 326(Pt B): 116836, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435130

RESUMO

Renewable energy generation varies frequently, making it difficult to match electricity demand. Pumped storage hydropower plants can alleviate this problem by reducing the unevenness of renewable energy generation. It is a new exploration of energy storage methods to construct pumped storage hydropower plants by using underground goaf of abandoned mines and mining subsidence water area. However, the construction of lower reservoirs using underground goaf areas of abandoned mines can lead to potential heavy metal pollution. To assess the impact of using abandoned mines for pumped storage hydropower on the downstream surface water environment, this work first analyzed the release characteristics of heavy metals from underground goaf and surface dump through field sampling and leaching tests, then constructed a water-environment model of the downstream surface water based on the experimental results and water environment theory, and finally simulated and analyzed the impact of underground pollutants pumped to the surface on downstream surface water-quality in typical hydrological years. The maximum error between the simulated values and measured values of the hydrodynamic model was 0.1, and the overall error was within a reasonable range (±0.2 m). The comparison between simulated values and measured values of heavy metal concentration in water quality model showed RMSE values ranged from 0.003 to 0.81, with an average of 0.4; the SI ranged from 0.84 to 0.95, with an average of 0.89. During the simulation of low, normal, and high flow years, pollution downstream was concentrated near the drainage outlet, and the underground pollutants pumped to the surface influenced the concentration of heavy metals there. After a period of drainage, the concentration of heavy metals decreased. Drainage volume was an important factor affecting the concentration of heavy metals downstream surface water. These results prove that the water environment model established based on MIKE21 is reliable and can provide guidance for the simulation and control of heavy metal pollution in the utilization of abandoned mines for pumped storage hydropower. This work provides a reproducible idea and method to assess the impact of using abandoned mines and mining subsidence water area for pumped storage hydropower on downstream surface water and ensure the safety of the ecological environment.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Mineração , Metais Pesados/análise , Poluição Ambiental , Meio Ambiente , Monitoramento Ambiental , Poluentes do Solo/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-34202710

RESUMO

Open-pit mining causes soil damage and affects the health of the ecosystem. In the arid grassland mining areas, the soil is severely sanded, water-starved, and saline, thus making it difficult for plants and microorganisms to survive. Water-jet loom sludge can be used to improve the quality as it contains a lot of clay and is rich in organic matter, which provides a material basis for microorganism activity. To explore the effects of microbial agent-modified water-jet loom sludge on the restoration of degraded soil in grassland mining areas, four pot trials were set up, i.e., for untreated soil, the application of a microbial agent alone, the application of water-jet loom sludge alone, and the combined application of water-jet loom sludge and the microbial agent. The results show that (1) microbial agent-modified sludge can improve soil water-holding capacity and aggregate stability; (2) the nutrient content of the restored soil fraction increased significantly, and the pH of the original saline soil decreased from 9.06 to 7.84; (3) this method significantly increased plant biomass and microbial biomass carbon and enhanced the abundance and diversity of fungi and bacteria. The three treatments had different results in different soil properties, and the effect of the combined water-jet loom sludge and microbial agent treatment on soil remediation was significantly better than the individual application of either.


Assuntos
Esgotos , Solo , Biomassa , Ecossistema , Estudos de Viabilidade , Microbiologia do Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA